Machine Learning-Assisted Hybrid ReaxFF Simulations

雷亚克夫 分子动力学 力场(虚构) 化学 计算机科学 计算化学 人工智能 原子间势
作者
Dündar E. Yılmaz,W. Hunter Woodward,Adri C. T. van Duin
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:17 (11): 6705-6712 被引量:7
标识
DOI:10.1021/acs.jctc.1c00523
摘要

We have developed a machine learning (ML)-assisted Hybrid ReaxFF simulation method ("Hybrid/Reax"), which alternates reactive and non-reactive molecular dynamics simulations with the assistance of ML models to simulate phenomena that require longer time scales and/or larger systems than are typically accessible to ReaxFF. Hybrid/Reax uses a specialized tracking tool during the reactive simulations to further accelerate chemical reactions. Non-reactive simulations are used to equilibrate the system after the reactive simulation stage. ML models are used between reactive and non-reactive stages to predict non-reactive force field parameters of the system based on the updated bond topology. Hybrid/Reax simulation cycles can be continued until the desired chemical reactions are observed. As a case study, this method was used to study the cross-linking of a polyethylene (PE) matrix analogue (decane) with the cross-linking agent dicumyl peroxide (DCP). We were able to run relatively long simulations [>20 million molecular dynamics (MD) steps] on a small test system (4660 atoms) to simulate cross-linking reactions of PE in the presence of DCP. Starting with 80 PE molecules, more than half of them cross-linked by the end of the Hybrid/Reax cycles on a single Xeon processor in under 48 h. This simulation would take approximately 1 month if run with pure ReaxFF MD on the same machine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
彳亍1117应助友好冰旋采纳,获得20
刚刚
刚刚
kk发布了新的文献求助10
1秒前
2秒前
3秒前
4秒前
任性的友桃完成签到,获得积分10
5秒前
Cain发布了新的文献求助10
6秒前
helly发布了新的文献求助10
6秒前
完美世界应助淡然紫寒采纳,获得10
6秒前
7秒前
10秒前
11秒前
Sun发布了新的文献求助10
11秒前
llalluan发布了新的文献求助10
13秒前
16秒前
16秒前
羊羊发布了新的文献求助10
19秒前
19秒前
20秒前
21秒前
chen应助科研通管家采纳,获得10
21秒前
大模型应助科研通管家采纳,获得10
21秒前
烟花应助科研通管家采纳,获得10
21秒前
chen应助科研通管家采纳,获得10
21秒前
今后应助科研通管家采纳,获得10
21秒前
劲秉应助科研通管家采纳,获得30
21秒前
JamesPei应助科研通管家采纳,获得10
21秒前
卷卷516发布了新的文献求助10
21秒前
chen应助科研通管家采纳,获得10
21秒前
chen应助科研通管家采纳,获得10
21秒前
21秒前
英姑应助科研通管家采纳,获得30
21秒前
21秒前
chenshi0515完成签到 ,获得积分10
23秒前
岁岁发布了新的文献求助30
24秒前
24秒前
25秒前
流星噬月发布了新的文献求助10
25秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3458771
求助须知:如何正确求助?哪些是违规求助? 3053518
关于积分的说明 9036928
捐赠科研通 2742726
什么是DOI,文献DOI怎么找? 1504524
科研通“疑难数据库(出版商)”最低求助积分说明 695319
邀请新用户注册赠送积分活动 694519