计算机科学
散列函数
判别式
人工智能
图像检索
图形
模式识别(心理学)
计算机视觉
图像(数学)
理论计算机科学
计算机安全
作者
Jian Guo Gao,Xiaobo Shen,Peng Fu,Zexuan Ji,Tao Wang
出处
期刊:IEEE Geoscience and Remote Sensing Letters
[Institute of Electrical and Electronics Engineers]
日期:2021-08-24
卷期号:19: 1-5
被引量:5
标识
DOI:10.1109/lgrs.2021.3093884
摘要
Recently, hashing has been successfully applied for large-scale remote sensing image retrieval (LSRSIR) due to its advantage in terms of computation and storage. In LSRSIR, existing hashing methods mainly focus on single-source remotely sensed data. They cannot effectively fuse multisource remotely sensed data, which has a large potential for LSRSIR. To fulfill this gap, this letter proposes a novel deep hashing method, dubbed Multiview Graph Convolutional Hashing (MGCH) that can successfully fuse multisource remote sensing image. Since graph convolutional network (GCN) has been applied as an effective means that expresses and integrates relationships into features, MGCH applies a GCN to explore inherent structural similarity among multiview data, which will help to generate discriminative hash codes. An asymmetric scheme is developed that optimizes the proposed deep model in an end-to-end manner to improve training efficiency. We evaluate the proposed method by fusing two different kinds of RS images, i.e., multispectral (MUL) image and panchromatic (PAN) image. The experimental results on the dual-source RS image data set (DSRSID) show that the proposed MGCH outperforms state-of-the-art multiview hashing methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI