Role of artificial intelligence in cardiovascular risk prediction and outcomes: comparison of machine-learning and conventional statistical approaches for the analysis of carotid ultrasound features and intra-plaque neovascularization

医学 危险系数 单变量分析 冠状动脉疾病 比例危险模型 超声波 随机森林 易损斑块 纤维帽 单变量 颈总动脉 心脏病学 颈动脉 放射科 内科学 多元统计 多元分析 机器学习 置信区间 统计 数学 计算机科学
作者
Amer M. Johri,Laura E. Mantella,Ankush D. Jamthikar,Luca Saba,John R. Laird,Jasjit S. Suri
出处
期刊:International Journal of Cardiovascular Imaging [Springer Nature]
卷期号:37 (11): 3145-3156 被引量:30
标识
DOI:10.1007/s10554-021-02294-0
摘要

The aim of this study was to compare machine learning (ML) methods with conventional statistical methods to investigate the predictive ability of carotid plaque characteristics for assessing the risk of coronary artery disease (CAD) and cardiovascular (CV) events. Focused carotid B-mode ultrasound, contrast-enhanced ultrasound, and coronary angiography were performed on 459 participants. These participants were followed for 30 days. Plaque characteristics such as carotid intima-media thickness (cIMT), maximum plaque height (MPH), total plaque area (TPA), and intraplaque neovascularization (IPN) were measured at baseline. Two ML-based algorithms—random forest (RF) and random survival forest (RSF) were used for CAD and CV event prediction. The performance of these algorithms was compared against (i) univariate and multivariate analysis for CAD prediction using the area-under-the-curve (AUC) and (ii) Cox proportional hazard model for CV event prediction using the concordance index (c-index). There was a significant association between CAD and carotid plaque characteristics [cIMT (odds ratio (OR) = 1.49, p = 0.03), MPH (OR = 2.44, p < 0.0001), TPA (OR = 1.61, p < 0.0001), and IPN (OR = 2.78, p < 0.0001)]. IPN alone reported significant CV event prediction (hazard ratio = 1.24, p < 0.0001). CAD prediction using the RF algorithm reported an improvement in AUC by ~ 3% over the univariate analysis with IPN alone (0.97 vs. 0.94, p < 0.0001). Cardiovascular event prediction using RSF demonstrated an improvement in the c-index by ~ 17.8% over the Cox-based model (0.86 vs. 0.73). Carotid imaging phenotypes and IPN were associated with CAD and CV events. The ML-based system is superior to the conventional statistically-derived approaches for CAD prediction and survival analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
长度2到发布了新的文献求助10
2秒前
2秒前
hyman1218发布了新的文献求助50
2秒前
君子扑火完成签到,获得积分10
2秒前
淡定的勒完成签到,获得积分10
3秒前
3秒前
浅笑_随风发布了新的文献求助10
3秒前
yinzenglinnn发布了新的文献求助10
3秒前
3秒前
zhangguo发布了新的文献求助100
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
4秒前
李健应助完美平灵采纳,获得10
4秒前
4秒前
4秒前
打打应助konoraha采纳,获得10
4秒前
neufy发布了新的文献求助10
4秒前
nighwalk发布了新的文献求助10
5秒前
豌豆射手发布了新的文献求助10
5秒前
5秒前
6秒前
caocao发布了新的文献求助10
6秒前
孤独的远山完成签到,获得积分10
6秒前
缓慢千易完成签到 ,获得积分10
7秒前
rabpig完成签到,获得积分10
7秒前
畅快的寻凝完成签到,获得积分10
7秒前
今后应助third采纳,获得10
7秒前
无期发布了新的文献求助10
7秒前
mookie发布了新的文献求助10
8秒前
次我完成签到,获得积分10
8秒前
顾矜应助dyd采纳,获得10
8秒前
8秒前
zqk02发布了新的文献求助10
9秒前
cy发布了新的文献求助10
9秒前
10秒前
路瑶发布了新的文献求助10
11秒前
研友_LJGoXn发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718202
求助须知:如何正确求助?哪些是违规求助? 5251289
关于积分的说明 15284999
捐赠科研通 4868486
什么是DOI,文献DOI怎么找? 2614197
邀请新用户注册赠送积分活动 1564030
关于科研通互助平台的介绍 1521515