Role of artificial intelligence in cardiovascular risk prediction and outcomes: comparison of machine-learning and conventional statistical approaches for the analysis of carotid ultrasound features and intra-plaque neovascularization

医学 危险系数 单变量分析 冠状动脉疾病 比例危险模型 超声波 随机森林 易损斑块 纤维帽 单变量 颈总动脉 心脏病学 颈动脉 放射科 内科学 多元统计 多元分析 机器学习 置信区间 统计 数学 计算机科学
作者
Amer M. Johri,Laura E. Mantella,Ankush D. Jamthikar,Luca Saba,John R. Laird,Jasjit S. Suri
出处
期刊:International Journal of Cardiovascular Imaging [Springer Nature]
卷期号:37 (11): 3145-3156 被引量:30
标识
DOI:10.1007/s10554-021-02294-0
摘要

The aim of this study was to compare machine learning (ML) methods with conventional statistical methods to investigate the predictive ability of carotid plaque characteristics for assessing the risk of coronary artery disease (CAD) and cardiovascular (CV) events. Focused carotid B-mode ultrasound, contrast-enhanced ultrasound, and coronary angiography were performed on 459 participants. These participants were followed for 30 days. Plaque characteristics such as carotid intima-media thickness (cIMT), maximum plaque height (MPH), total plaque area (TPA), and intraplaque neovascularization (IPN) were measured at baseline. Two ML-based algorithms—random forest (RF) and random survival forest (RSF) were used for CAD and CV event prediction. The performance of these algorithms was compared against (i) univariate and multivariate analysis for CAD prediction using the area-under-the-curve (AUC) and (ii) Cox proportional hazard model for CV event prediction using the concordance index (c-index). There was a significant association between CAD and carotid plaque characteristics [cIMT (odds ratio (OR) = 1.49, p = 0.03), MPH (OR = 2.44, p < 0.0001), TPA (OR = 1.61, p < 0.0001), and IPN (OR = 2.78, p < 0.0001)]. IPN alone reported significant CV event prediction (hazard ratio = 1.24, p < 0.0001). CAD prediction using the RF algorithm reported an improvement in AUC by ~ 3% over the univariate analysis with IPN alone (0.97 vs. 0.94, p < 0.0001). Cardiovascular event prediction using RSF demonstrated an improvement in the c-index by ~ 17.8% over the Cox-based model (0.86 vs. 0.73). Carotid imaging phenotypes and IPN were associated with CAD and CV events. The ML-based system is superior to the conventional statistically-derived approaches for CAD prediction and survival analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Hey发布了新的文献求助10
刚刚
小蘑菇应助转转采纳,获得30
刚刚
123456完成签到,获得积分10
刚刚
1秒前
1秒前
rainy77完成签到 ,获得积分10
2秒前
libra发布了新的文献求助10
2秒前
zfd完成签到,获得积分10
2秒前
情怀应助内向的小脑采纳,获得10
3秒前
3秒前
tong发布了新的文献求助10
3秒前
4秒前
ting完成签到,获得积分10
4秒前
QH完成签到,获得积分10
4秒前
5秒前
jiejie321完成签到,获得积分10
5秒前
6秒前
加油小李发布了新的文献求助10
6秒前
足下慵才发布了新的文献求助20
6秒前
2以李发布了新的文献求助10
6秒前
如意向真完成签到,获得积分10
6秒前
6秒前
老迟到的羊完成签到 ,获得积分10
7秒前
kong发布了新的文献求助10
7秒前
小谢不谢完成签到,获得积分10
7秒前
weiliuping完成签到 ,获得积分10
7秒前
棉花糖完成签到,获得积分10
7秒前
kaw完成签到,获得积分10
7秒前
彭于晏应助有魅力曼易采纳,获得10
7秒前
霍仁维思完成签到,获得积分10
7秒前
8秒前
8秒前
ting发布了新的文献求助10
8秒前
8秒前
9秒前
10秒前
哎ya发布了新的文献求助10
10秒前
丁点发布了新的文献求助10
11秒前
深情安青应助tong采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684488
求助须知:如何正确求助?哪些是违规求助? 5036727
关于积分的说明 15184287
捐赠科研通 4843754
什么是DOI,文献DOI怎么找? 2596869
邀请新用户注册赠送积分活动 1549511
关于科研通互助平台的介绍 1508027