亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Role of artificial intelligence in cardiovascular risk prediction and outcomes: comparison of machine-learning and conventional statistical approaches for the analysis of carotid ultrasound features and intra-plaque neovascularization

医学 危险系数 单变量分析 冠状动脉疾病 比例危险模型 超声波 随机森林 易损斑块 纤维帽 单变量 颈总动脉 心脏病学 颈动脉 放射科 内科学 多元统计 多元分析 机器学习 置信区间 统计 数学 计算机科学
作者
Amer M. Johri,Laura E. Mantella,Ankush D. Jamthikar,Luca Saba,John R. Laird,Jasjit S. Suri
出处
期刊:International Journal of Cardiovascular Imaging [Springer Nature]
卷期号:37 (11): 3145-3156 被引量:30
标识
DOI:10.1007/s10554-021-02294-0
摘要

The aim of this study was to compare machine learning (ML) methods with conventional statistical methods to investigate the predictive ability of carotid plaque characteristics for assessing the risk of coronary artery disease (CAD) and cardiovascular (CV) events. Focused carotid B-mode ultrasound, contrast-enhanced ultrasound, and coronary angiography were performed on 459 participants. These participants were followed for 30 days. Plaque characteristics such as carotid intima-media thickness (cIMT), maximum plaque height (MPH), total plaque area (TPA), and intraplaque neovascularization (IPN) were measured at baseline. Two ML-based algorithms—random forest (RF) and random survival forest (RSF) were used for CAD and CV event prediction. The performance of these algorithms was compared against (i) univariate and multivariate analysis for CAD prediction using the area-under-the-curve (AUC) and (ii) Cox proportional hazard model for CV event prediction using the concordance index (c-index). There was a significant association between CAD and carotid plaque characteristics [cIMT (odds ratio (OR) = 1.49, p = 0.03), MPH (OR = 2.44, p < 0.0001), TPA (OR = 1.61, p < 0.0001), and IPN (OR = 2.78, p < 0.0001)]. IPN alone reported significant CV event prediction (hazard ratio = 1.24, p < 0.0001). CAD prediction using the RF algorithm reported an improvement in AUC by ~ 3% over the univariate analysis with IPN alone (0.97 vs. 0.94, p < 0.0001). Cardiovascular event prediction using RSF demonstrated an improvement in the c-index by ~ 17.8% over the Cox-based model (0.86 vs. 0.73). Carotid imaging phenotypes and IPN were associated with CAD and CV events. The ML-based system is superior to the conventional statistically-derived approaches for CAD prediction and survival analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sun发布了新的文献求助10
5秒前
17秒前
传奇3应助飘逸的雪珍采纳,获得30
30秒前
31秒前
小于完成签到,获得积分10
31秒前
ling完成签到,获得积分10
35秒前
小于完成签到,获得积分10
42秒前
ling发布了新的文献求助10
42秒前
小邓完成签到,获得积分10
53秒前
ding应助麦麦采纳,获得10
1分钟前
小豹子完成签到,获得积分10
1分钟前
1分钟前
麦麦发布了新的文献求助10
1分钟前
朴素夜梦完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
可爱的函函应助hxx采纳,获得10
1分钟前
2分钟前
9527完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
无极微光应助啊z采纳,获得20
2分钟前
以菱完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
hxx发布了新的文献求助10
3分钟前
3分钟前
3分钟前
Lucas应助Sun采纳,获得10
3分钟前
wanci应助PAD采纳,获得10
3分钟前
打打应助科研通管家采纳,获得10
3分钟前
科研通AI6应助clearlove采纳,获得10
3分钟前
YYL完成签到 ,获得积分10
4分钟前
4分钟前
jdjf发布了新的文献求助10
4分钟前
4分钟前
充电宝应助jdjf采纳,获得10
4分钟前
丘比特应助hxx采纳,获得10
4分钟前
zznzn发布了新的文献求助10
4分钟前
zznzn完成签到,获得积分10
4分钟前
善学以致用应助zznzn采纳,获得10
4分钟前
asdf完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Exosomes Pipeline Insight, 2025 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671164
求助须知:如何正确求助?哪些是违规求助? 4910774
关于积分的说明 15134129
捐赠科研通 4829905
什么是DOI,文献DOI怎么找? 2586513
邀请新用户注册赠送积分活动 1540167
关于科研通互助平台的介绍 1498366