Role of artificial intelligence in cardiovascular risk prediction and outcomes: comparison of machine-learning and conventional statistical approaches for the analysis of carotid ultrasound features and intra-plaque neovascularization

医学 危险系数 单变量分析 冠状动脉疾病 比例危险模型 超声波 随机森林 易损斑块 纤维帽 单变量 颈总动脉 心脏病学 颈动脉 放射科 内科学 多元统计 多元分析 机器学习 置信区间 统计 数学 计算机科学
作者
Amer M. Johri,Laura E. Mantella,Ankush D. Jamthikar,Luca Saba,John R. Laird,Jasjit S. Suri
出处
期刊:International Journal of Cardiovascular Imaging [Springer Nature]
卷期号:37 (11): 3145-3156 被引量:30
标识
DOI:10.1007/s10554-021-02294-0
摘要

The aim of this study was to compare machine learning (ML) methods with conventional statistical methods to investigate the predictive ability of carotid plaque characteristics for assessing the risk of coronary artery disease (CAD) and cardiovascular (CV) events. Focused carotid B-mode ultrasound, contrast-enhanced ultrasound, and coronary angiography were performed on 459 participants. These participants were followed for 30 days. Plaque characteristics such as carotid intima-media thickness (cIMT), maximum plaque height (MPH), total plaque area (TPA), and intraplaque neovascularization (IPN) were measured at baseline. Two ML-based algorithms—random forest (RF) and random survival forest (RSF) were used for CAD and CV event prediction. The performance of these algorithms was compared against (i) univariate and multivariate analysis for CAD prediction using the area-under-the-curve (AUC) and (ii) Cox proportional hazard model for CV event prediction using the concordance index (c-index). There was a significant association between CAD and carotid plaque characteristics [cIMT (odds ratio (OR) = 1.49, p = 0.03), MPH (OR = 2.44, p < 0.0001), TPA (OR = 1.61, p < 0.0001), and IPN (OR = 2.78, p < 0.0001)]. IPN alone reported significant CV event prediction (hazard ratio = 1.24, p < 0.0001). CAD prediction using the RF algorithm reported an improvement in AUC by ~ 3% over the univariate analysis with IPN alone (0.97 vs. 0.94, p < 0.0001). Cardiovascular event prediction using RSF demonstrated an improvement in the c-index by ~ 17.8% over the Cox-based model (0.86 vs. 0.73). Carotid imaging phenotypes and IPN were associated with CAD and CV events. The ML-based system is superior to the conventional statistically-derived approaches for CAD prediction and survival analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白玲发布了新的文献求助10
2秒前
橙子完成签到,获得积分10
2秒前
2秒前
4秒前
巴音布鲁克完成签到 ,获得积分10
4秒前
飘逸的往事完成签到,获得积分10
4秒前
4秒前
月流瓦完成签到,获得积分10
5秒前
彭于晏应助舒心雅山采纳,获得10
5秒前
橙子发布了新的文献求助10
5秒前
zly完成签到,获得积分10
6秒前
zfh发布了新的文献求助10
6秒前
王海海完成签到 ,获得积分10
6秒前
7秒前
LinZhi发布了新的文献求助10
7秒前
荔枝发布了新的文献求助10
7秒前
11111发布了新的文献求助10
7秒前
顾矜应助AAAA采纳,获得10
8秒前
小二郎应助优美紫槐采纳,获得10
9秒前
9秒前
9秒前
月流瓦发布了新的文献求助10
11秒前
Jasper应助甜蜜水蜜桃采纳,获得10
11秒前
qqq发布了新的文献求助10
12秒前
12秒前
14秒前
FashionBoy应助现实的觅波采纳,获得10
15秒前
15秒前
Akim应助能干的初瑶采纳,获得10
16秒前
英姑应助Nature_Science采纳,获得10
16秒前
16秒前
17秒前
W_GR发布了新的文献求助10
17秒前
阿氰氰发布了新的文献求助10
17秒前
初芷伊完成签到,获得积分10
17秒前
不想起昵称完成签到 ,获得积分10
18秒前
小二郎应助荔枝采纳,获得10
19秒前
19秒前
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5602503
求助须知:如何正确求助?哪些是违规求助? 4687624
关于积分的说明 14850243
捐赠科研通 4684300
什么是DOI,文献DOI怎么找? 2539931
邀请新用户注册赠送积分活动 1506645
关于科研通互助平台的介绍 1471428