亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Role of artificial intelligence in cardiovascular risk prediction and outcomes: comparison of machine-learning and conventional statistical approaches for the analysis of carotid ultrasound features and intra-plaque neovascularization

医学 危险系数 单变量分析 冠状动脉疾病 比例危险模型 超声波 随机森林 易损斑块 纤维帽 单变量 颈总动脉 心脏病学 颈动脉 放射科 内科学 多元统计 多元分析 机器学习 置信区间 统计 数学 计算机科学
作者
Amer M. Johri,Laura E. Mantella,Ankush D. Jamthikar,Luca Saba,John R. Laird,Jasjit S. Suri
出处
期刊:International Journal of Cardiovascular Imaging [Springer Nature]
卷期号:37 (11): 3145-3156 被引量:30
标识
DOI:10.1007/s10554-021-02294-0
摘要

The aim of this study was to compare machine learning (ML) methods with conventional statistical methods to investigate the predictive ability of carotid plaque characteristics for assessing the risk of coronary artery disease (CAD) and cardiovascular (CV) events. Focused carotid B-mode ultrasound, contrast-enhanced ultrasound, and coronary angiography were performed on 459 participants. These participants were followed for 30 days. Plaque characteristics such as carotid intima-media thickness (cIMT), maximum plaque height (MPH), total plaque area (TPA), and intraplaque neovascularization (IPN) were measured at baseline. Two ML-based algorithms—random forest (RF) and random survival forest (RSF) were used for CAD and CV event prediction. The performance of these algorithms was compared against (i) univariate and multivariate analysis for CAD prediction using the area-under-the-curve (AUC) and (ii) Cox proportional hazard model for CV event prediction using the concordance index (c-index). There was a significant association between CAD and carotid plaque characteristics [cIMT (odds ratio (OR) = 1.49, p = 0.03), MPH (OR = 2.44, p < 0.0001), TPA (OR = 1.61, p < 0.0001), and IPN (OR = 2.78, p < 0.0001)]. IPN alone reported significant CV event prediction (hazard ratio = 1.24, p < 0.0001). CAD prediction using the RF algorithm reported an improvement in AUC by ~ 3% over the univariate analysis with IPN alone (0.97 vs. 0.94, p < 0.0001). Cardiovascular event prediction using RSF demonstrated an improvement in the c-index by ~ 17.8% over the Cox-based model (0.86 vs. 0.73). Carotid imaging phenotypes and IPN were associated with CAD and CV events. The ML-based system is superior to the conventional statistically-derived approaches for CAD prediction and survival analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助cenghao采纳,获得10
30秒前
易水完成签到 ,获得积分10
31秒前
37秒前
爆米花应助科研通管家采纳,获得10
51秒前
shhoing应助科研通管家采纳,获得10
51秒前
gexzygg应助科研通管家采纳,获得10
51秒前
cenghao发布了新的文献求助10
51秒前
湘崽丫完成签到 ,获得积分10
55秒前
1分钟前
Yxxx完成签到 ,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
丘比特应助丽海张采纳,获得10
3分钟前
风轻云淡发布了新的文献求助20
3分钟前
3分钟前
丽海张发布了新的文献求助10
4分钟前
丽海张完成签到,获得积分10
4分钟前
Sevense_完成签到,获得积分10
4分钟前
4分钟前
bubulin完成签到,获得积分10
4分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
sisyphe发布了新的文献求助10
5分钟前
ikouyo完成签到 ,获得积分10
6分钟前
科研通AI6应助hourt2395采纳,获得10
6分钟前
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
有机盐应助科研通管家采纳,获得10
6分钟前
hourt2395发布了新的文献求助10
7分钟前
7分钟前
hourt2395完成签到,获得积分20
7分钟前
嘟嘟嘟嘟发布了新的文献求助30
7分钟前
poki完成签到 ,获得积分10
7分钟前
8分钟前
8分钟前
shhoing应助科研通管家采纳,获得10
8分钟前
所所应助科研通管家采纳,获得10
8分钟前
有机盐应助科研通管家采纳,获得10
8分钟前
shhoing应助科研通管家采纳,获得10
8分钟前
Yini应助科研通管家采纳,获得40
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561515
求助须知:如何正确求助?哪些是违规求助? 4646622
关于积分的说明 14678699
捐赠科研通 4587937
什么是DOI,文献DOI怎么找? 2517258
邀请新用户注册赠送积分活动 1490540
关于科研通互助平台的介绍 1461533