Role of artificial intelligence in cardiovascular risk prediction and outcomes: comparison of machine-learning and conventional statistical approaches for the analysis of carotid ultrasound features and intra-plaque neovascularization

医学 危险系数 单变量分析 冠状动脉疾病 比例危险模型 超声波 随机森林 易损斑块 纤维帽 单变量 颈总动脉 心脏病学 颈动脉 放射科 内科学 多元统计 多元分析 机器学习 置信区间 统计 数学 计算机科学
作者
Amer M. Johri,Laura E. Mantella,Ankush D. Jamthikar,Luca Saba,John R. Laird,Jasjit S. Suri
出处
期刊:International Journal of Cardiovascular Imaging [Springer Science+Business Media]
卷期号:37 (11): 3145-3156 被引量:30
标识
DOI:10.1007/s10554-021-02294-0
摘要

The aim of this study was to compare machine learning (ML) methods with conventional statistical methods to investigate the predictive ability of carotid plaque characteristics for assessing the risk of coronary artery disease (CAD) and cardiovascular (CV) events. Focused carotid B-mode ultrasound, contrast-enhanced ultrasound, and coronary angiography were performed on 459 participants. These participants were followed for 30 days. Plaque characteristics such as carotid intima-media thickness (cIMT), maximum plaque height (MPH), total plaque area (TPA), and intraplaque neovascularization (IPN) were measured at baseline. Two ML-based algorithms—random forest (RF) and random survival forest (RSF) were used for CAD and CV event prediction. The performance of these algorithms was compared against (i) univariate and multivariate analysis for CAD prediction using the area-under-the-curve (AUC) and (ii) Cox proportional hazard model for CV event prediction using the concordance index (c-index). There was a significant association between CAD and carotid plaque characteristics [cIMT (odds ratio (OR) = 1.49, p = 0.03), MPH (OR = 2.44, p < 0.0001), TPA (OR = 1.61, p < 0.0001), and IPN (OR = 2.78, p < 0.0001)]. IPN alone reported significant CV event prediction (hazard ratio = 1.24, p < 0.0001). CAD prediction using the RF algorithm reported an improvement in AUC by ~ 3% over the univariate analysis with IPN alone (0.97 vs. 0.94, p < 0.0001). Cardiovascular event prediction using RSF demonstrated an improvement in the c-index by ~ 17.8% over the Cox-based model (0.86 vs. 0.73). Carotid imaging phenotypes and IPN were associated with CAD and CV events. The ML-based system is superior to the conventional statistically-derived approaches for CAD prediction and survival analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助ddizi采纳,获得30
刚刚
刚刚
小池同学完成签到,获得积分10
1秒前
科研通AI6应助121311采纳,获得10
2秒前
Carolin发布了新的文献求助10
2秒前
谦让涵菡完成签到 ,获得积分10
3秒前
王耀武完成签到,获得积分10
3秒前
朴素念之完成签到,获得积分20
4秒前
4秒前
学术裁缝发布了新的文献求助10
4秒前
连冬萱发布了新的文献求助10
4秒前
ruby完成签到,获得积分10
4秒前
大魔王完成签到 ,获得积分10
5秒前
zhang完成签到,获得积分10
5秒前
YW发布了新的文献求助30
5秒前
xg发布了新的文献求助10
6秒前
7秒前
8秒前
9秒前
踏实绮露完成签到 ,获得积分10
9秒前
9秒前
iam小羊人完成签到,获得积分20
10秒前
10秒前
11秒前
失眠无声完成签到,获得积分10
11秒前
Jiang完成签到,获得积分10
12秒前
大模型应助称心的乘云采纳,获得10
12秒前
桐桐应助lw采纳,获得10
13秒前
13秒前
Hello应助连冬萱采纳,获得30
14秒前
14秒前
15秒前
Rain_BJ发布了新的文献求助10
15秒前
Carolin完成签到,获得积分10
16秒前
孙宗帅发布了新的文献求助10
16秒前
16秒前
iam小羊人发布了新的文献求助20
16秒前
17秒前
下雨天睡个懒觉完成签到,获得积分10
18秒前
丘比特应助强壮的美女采纳,获得10
18秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226726
求助须知:如何正确求助?哪些是违规求助? 4398101
关于积分的说明 13688414
捐赠科研通 4262779
什么是DOI,文献DOI怎么找? 2339284
邀请新用户注册赠送积分活动 1336666
关于科研通互助平台的介绍 1292702