花青素
生物
花瓣
氰化物
天竺葵苷
芍药苷
类黄酮生物合成
转录组
基因
代谢组
植物
突变体
生物化学
飞燕草素
基因表达
代谢物
作者
Jiaojiao Lu,Qing Zhang,Lixin Lang,Chuang Jiang,Xiaofeng Wang,Hongmei Sun
标识
DOI:10.1186/s12870-021-03063-w
摘要
Abstract Background Roses are famous ornamental plants worldwide. Floral coloration is one of the most prominent traits in roses and is mainly regulated through the anthocyanin biosynthetic pathway. In this study, we investigated the key genes and metabolites of the anthocyanin biosynthetic pathway involved in color mutation in miniature roses. A comparative metabolome and transcriptome analysis was carried out on the Neptune King rose and its color mutant, Queen rose, at the blooming stage. Neptune King rose has light pink colored petals while Queen rose has deep pink colored petals. Result A total of 190 flavonoid-related metabolites and 38,551 unique genes were identified. The contents of 45 flavonoid-related metabolites, and the expression of 15 genes participating in the flavonoid pathway, varied significantly between the two cultivars. Seven anthocyanins (cyanidin 3- O -glucosyl-malonylglucoside, cyanidin O -syringic acid, cyanidin 3- O -rutinoside, cyanidin 3- O -galactoside, cyanidin 3- O -glucoside, peonidin 3- O -glucoside chloride, and pelargonidin 3- O -glucoside) were found to be the major metabolites, with higher abundance in the Queen rose. Thirteen anthocyanin biosynthetic related genes showed an upregulation trend in the mutant flower, which may favor the higher levels of anthocyanins in the mutant. Besides, eight TRANSPARENT TESTA 12 genes were found upregulated in Queen rose, probably contributing to a high vacuolar sequestration of anthocyanins. Thirty transcription factors, including two MYB and one bHLH, were differentially expressed between the two cultivars. Conclusions This study provides important insights into major genes and metabolites of the anthocyanin biosynthetic pathway modulating flower coloration in miniature rose. The results will be conducive for manipulating the anthocyanin pathways in order to engineer novel miniature rose cultivars with specific colors.
科研通智能强力驱动
Strongly Powered by AbleSci AI