Efficient Generalized Surrogate-Assisted Evolutionary Algorithm for High-Dimensional Expensive Problems

进化算法 水准点(测量) 计算机科学 算法 进化计算 数学优化 分拆(数论) 基于群体的增量学习 最优化问题 遗传算法 替代模型 数学 大地测量学 组合数学 地理
作者
Xiwen Cai,Liang Gao,Xinyu Li
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:24 (2): 365-379 被引量:127
标识
DOI:10.1109/tevc.2019.2919762
摘要

Engineering optimization problems usually involve computationally expensive simulations and many design variables. Solving such problems in an efficient manner is still a major challenge. In this paper, a generalized surrogate-assisted evolutionary algorithm is proposed to solve such high-dimensional expensive problems. The proposed algorithm is based on the optimization framework of the genetic algorithm (GA). This algorithm proposes to use a surrogate-based trust region local search method, a surrogate-guided GA (SGA) updating mechanism with a neighbor region partition strategy and a prescreening strategy based on the expected improvement infilling criterion of a simplified Kriging in the optimization process. The SGA updating mechanism is a special characteristic of the proposed algorithm. This mechanism makes a fusion between surrogates and the evolutionary algorithm. The neighbor region partition strategy effectively retains the diversity of the population. Moreover, multiple surrogates used in the SGA updating mechanism make the proposed algorithm optimize robustly. The proposed algorithm is validated by testing several high-dimensional numerical benchmark problems with dimensions varying from 30 to 100, and an overall comparison is made between the proposed algorithm and other optimization algorithms. The results show that the proposed algorithm is very efficient and promising for optimizing high-dimensional expensive problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZH发布了新的文献求助10
刚刚
研友_VZG7GZ应助Endeavor采纳,获得10
刚刚
warden完成签到 ,获得积分10
刚刚
科研通AI2S应助sisyphus_yy采纳,获得10
1秒前
施天问发布了新的文献求助10
1秒前
3秒前
Singularity应助内向寒云采纳,获得10
3秒前
dd完成签到 ,获得积分10
3秒前
4秒前
Miracle发布了新的文献求助10
5秒前
开花完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
redking完成签到,获得积分10
7秒前
lingquanmeng完成签到,获得积分10
8秒前
8秒前
羽生发布了新的文献求助10
8秒前
隐形曼青应助miumiu采纳,获得10
9秒前
beckham发布了新的文献求助10
10秒前
施天问完成签到,获得积分10
11秒前
uu发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
小蘑菇应助Miracle采纳,获得10
12秒前
轩轩轩轩完成签到 ,获得积分10
13秒前
13秒前
14秒前
litao完成签到,获得积分10
15秒前
乐乐应助九千七采纳,获得10
17秒前
梁三柏应助makabaka采纳,获得10
17秒前
18秒前
18秒前
xyz发布了新的文献求助10
19秒前
22秒前
tree完成签到,获得积分10
22秒前
miumiu完成签到,获得积分20
22秒前
xiaoyu1完成签到,获得积分10
23秒前
小鞋发布了新的文献求助10
24秒前
鳗鱼白竹完成签到,获得积分10
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975755
求助须知:如何正确求助?哪些是违规求助? 3520108
关于积分的说明 11200829
捐赠科研通 3256492
什么是DOI,文献DOI怎么找? 1798298
邀请新用户注册赠送积分活动 877509
科研通“疑难数据库(出版商)”最低求助积分说明 806403