Prediction of metabolic drug clearance in humans:In vitro–in vivoextrapolationvsallometric scaling

体内 药理学 化学 甲苯磺丁脲 右美沙芬 异速滴定 药代动力学 变异系数 医学 生物 内科学 色谱法 胰岛素 生态学 生物技术
作者
Mohammad Bagher Shiran,N. J. Proctor,Eleanor Howgate,K Rowland‐Yeo,Geoffrey T. Tucker,Amin Rostami‐Hodjegan
出处
期刊:Xenobiotica [Informa]
卷期号:36 (7): 567-580 被引量:83
标识
DOI:10.1080/00498250600761662
摘要

Previously in vitro-in vivo extrapolation (IVIVE) with the Simcyp Clearance and Interaction Simulator has been used to predict the clearance of 15 clinically used drugs in humans. The criteria for the selection of the drugs were that they are used as probes for the activity of specific cytochromes P450 (CYPs) or have a single CYP isoform as the major or sole contributor to their metabolism and that they do not exhibit non-linear kinetics in vivo. Where data were available for the clearance of the drugs in at least three animal species, the predictions from IVIVE have now been compared with those based on allometric scaling (AS). Adequate data were available for estimating oral clearance (CLp.o.) in 9 cases (alprazolam, sildenafil, caffeine, clozapine, cyclosporine, dextromethorphan, midazolam, omeprazole and tolbutamide) and intravenous clearance in 6 cases (CLi.v.) (cyclosporine, diclofenac, midazolam, omeprazole, theophylline and tolterodine). AS predictions were based on five different methods: (1) simple allometry (clearance versus body weight); (2) correction for maximum life-span potential (CL x MLP); (3) correction for brain weight (CL x BrW); (4) the use of body surface area; and (5) the rule of exponents. A prediction accuracy was indicated by mean-fold error and the Pearson product moment correlation coefficient. Predictions were considered successful if the mean-fold error was
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
123jjj完成签到,获得积分10
2秒前
自然发布了新的文献求助10
2秒前
2秒前
shone完成签到,获得积分10
2秒前
hhw完成签到,获得积分10
3秒前
LFY完成签到,获得积分10
3秒前
3秒前
跳跃的以蕊完成签到,获得积分20
3秒前
PTL完成签到,获得积分10
4秒前
4秒前
成就莞发布了新的文献求助30
4秒前
大个应助夏之星采纳,获得10
5秒前
可cabd完成签到,获得积分10
5秒前
古怪小枫发布了新的文献求助10
6秒前
jerry发布了新的文献求助10
6秒前
老天师一巴掌完成签到 ,获得积分10
7秒前
小庄完成签到 ,获得积分10
8秒前
路之遥兮完成签到,获得积分20
8秒前
波波玛奇朵完成签到,获得积分10
8秒前
深情安青应助小宇采纳,获得10
8秒前
小星星完成签到 ,获得积分0
8秒前
9秒前
9秒前
Ziyi_Xu完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
yx完成签到,获得积分0
9秒前
10秒前
Li完成签到,获得积分10
10秒前
PTL发布了新的文献求助10
10秒前
10秒前
努力学习完成签到,获得积分10
10秒前
理工完成签到,获得积分10
10秒前
乐乐完成签到,获得积分10
11秒前
赘婿应助鹿茸采纳,获得10
11秒前
17808352679完成签到,获得积分20
11秒前
11秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672