Optimising hurricane shelter locations with smart predict-then-optimise framework

计算机科学 工程类 环境科学
作者
Zhenlong Jiang,Ran Ji
出处
期刊:International Journal of Production Research [Taylor & Francis]
卷期号:: 1-21 被引量:1
标识
DOI:10.1080/00207543.2024.2412288
摘要

Hurricanes pose an escalating threat to global communities, underscoring the urgent need for robust disaster response strategies. A pivotal component of these strategies involves the establishment of secure shelters. However, the inherent vulnerability of these shelters to hurricane damage frequently undermines their utility. This study introduces a Predict-then-Optimise (PTO) framework designed to support relief agencies in selecting optimal locations for emergency shelters, with an emphasis on minimising potential damage during hurricanes. Employing a two-phase approach, the framework initially predicts potential hurricane-induced damage losses, subsequently utilising these predictions to optimise shelter placement strategies. Nevertheless, conventional PTO methods in shelter planning may lead to suboptimal decisions, primarily because of potential discrepancies between predicted and actual damage losses, given the inherent uncertainties and complexities of hurricane impacts. To address these limitations, our study introduces an advanced smart Predict-then-Optimise (SPO) framework. This SPO framework more cohensively integrates the prediction and optimisation phases, thereby facilitating an adaptive and resilient response to the dynamic challenges posed by hurricanes. We demonstrate the effectiveness of this methodology through a case study in Miami-Dade County, Florida, where the SPO framework successfully identified optimal shelter locations, significantly reducing exposure to high-risk areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科里斯皮尔应助zyjsunye采纳,获得10
1秒前
1秒前
2秒前
XiaolongYang完成签到,获得积分10
2秒前
happystar应助xin采纳,获得10
2秒前
Xujiamin完成签到,获得积分20
3秒前
量子星尘发布了新的文献求助10
4秒前
安医清嘉完成签到,获得积分10
4秒前
5秒前
student完成签到,获得积分10
6秒前
恋雅颖月发布了新的文献求助10
6秒前
美丽如柏完成签到,获得积分20
7秒前
happystar应助ll采纳,获得10
8秒前
热心的白莲完成签到,获得积分10
9秒前
加减乘除发布了新的文献求助10
9秒前
9秒前
Owen应助wangy采纳,获得10
9秒前
10秒前
科研通AI2S应助赛博朋克采纳,获得10
10秒前
11秒前
12秒前
田様应助student采纳,获得10
13秒前
温洪玲完成签到,获得积分20
13秒前
领导范儿应助Wuwuwu采纳,获得10
13秒前
郭亮发布了新的文献求助10
15秒前
16秒前
动听千秋完成签到 ,获得积分10
17秒前
欣慰薯片发布了新的文献求助10
17秒前
hzwdm1发布了新的文献求助10
17秒前
17秒前
18秒前
18秒前
18秒前
18秒前
JavedAli完成签到,获得积分10
19秒前
19秒前
19秒前
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4578224
求助须知:如何正确求助?哪些是违规求助? 3997171
关于积分的说明 12374791
捐赠科研通 3671317
什么是DOI,文献DOI怎么找? 2023340
邀请新用户注册赠送积分活动 1057301
科研通“疑难数据库(出版商)”最低求助积分说明 944261