材料科学
生物医学工程
自愈水凝胶
纳米技术
医学
高分子化学
作者
Yunqing Tian,Yiming Ma,Yan Kang,Shu Tian,Qingsi Li,Lei Zhang,Jing Yang
标识
DOI:10.1016/j.actbio.2024.07.043
摘要
Hypothermic preservation (HP) is highly desired for the maintenance of the viability of living cell specimens, e.g. rare cells in whole-blood samples or therapeutic cells, in an unfrozen state. However, the extension of the viable preservation time is a challenge because of the multiple injuries suffered by hypothermically preserved cells. Here, based on a dynamic bond crosslinked zwitterionic hydrogel, we established a sensing preservation system that could monitor the levels of reactive oxygen species (ROS) via real-time electronic signals and intelligent control of antioxidant addition, to completely prevent an excess of ROS in the whole-cell specimen. Furthermore, the hydrogel-based system can counter the extracellular-matrix-loss-induced anoikis of living cells. Based on the design aimed at affording protection against two primary HP injuries (i.e. ROS overproduction and anoikis) to cells, this system extended the preservation time of cell specimens under refrigerated conditions to 24 days. After preservation, the use of a mild cell retrieval process guaranteed the activity of the preserved living cells. This work not only possesses the potential to facilitate intelligent cell-based clinical applications, but also paves the way for the preparation of living materials that can host programmed cells with long-term survival. An intelligent system based on a zwitterionic sensing hydrogel is established, which can afford ultra-long hypothermic cell-preservation times of up to 24 days. The system enables the real-time monitoring of ROS overproduction and intelligent antioxidant addition, because of the merging of the smart hydrogel with a computer intelligent detection and control system. Furthermore, the automatic addition of an antioxidant according to the ROS-signal changes produced by the ZBA hydrogel effectively prevented HP lesions, including ROS over-production and ECM loss, in the preserved living cells. Subsequently, the system could also be gently dissociated, to retrieve the preserved cells. This work provides a solution for the real-time monitoring and long-term HP of living specimens, which holds the promise of benefiting cell-based medicine and the development of genetically programmed cell-based living materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI