Machine Learning for the Prediction of Surgical Morbidity in Placenta Accreta Spectrum

医学 接收机工作特性 置信区间 胎盘植入 急诊分诊台 四分位间距 子宫切除术 产科 外科 怀孕 内科学 急诊医学 胎盘 胎儿 生物 遗传学
作者
Itamar Futterman,Olivia Sher,Chaskin Wells Saroff,Alexa Cohen,Georgios Doulaveris,P. Dar,Myah Griffin,Meghana Limaye,Thomas Owens,Lois Brustman,Henri M. Rosenberg,Rebecca H. Jessel,Scott Chudnoff,Shoshana Haberman
出处
期刊:American Journal of Perinatology [Georg Thieme Verlag KG]
被引量:1
标识
DOI:10.1055/a-2405-3459
摘要

Objective We sought to create a machine learning (ML) model to identify variables that would aid in the prediction of surgical morbidity in cases of placenta accreta spectrum (PAS). Study Design A multicenter analysis including all cases of PAS identified by pathology specimen confirmation, across five tertiary care perinatal centers in New York City from 2013 to 2022. We developed models to predict operative morbidity using 213 variables including demographics, obstetrical information, and limited prenatal imaging findings detailing placental location. Our primary outcome was prediction of a surgical morbidity composite defined as including any of the following: blood loss (>1,500 mL), transfusion, intensive care unit admission, vasopressor use, mechanical ventilation/intubation, and organ injury. A nested, stratified, cross-validation approach was used to tune model hyperparameters and estimate generalizability. Gradient boosted tree classifier models incorporated preprocessing steps of standard scaling for numerical variables and one-hot encoding for categorical variables. Model performance was evaluated using area under the receiver operating characteristic curve (AUC), positive and negative predictive values (PPV, NPV), and F1 score. Variable importance ranking was also determined. Results Among 401 PAS cases, 326 (81%) underwent hysterectomy. Of the 401 cases of PAS, 309 (77%) had at least one event defined as surgical morbidity. Our predictive model had an AUC of 0.79 (95% confidence interval: 0.69, 0.89), PPV 0.79, NPV 0.76, and F1 score of 0.88. The variables most predictive of surgical morbidity were completion of a hysterectomy, prepregnancy body mass index (BMI), absence of a second trimester ultrasound, socioeconomic status zip code, BMI at delivery, number of prenatal visits, and delivery time of day. Conclusion By identifying social and obstetrical characteristics that increase patients' risk, ML models are useful in predicting PAS-related surgical morbidity. Utilizing ML could serve as a foundation for risk and complexity stratification in cases of PAS to optimize surgical planning. Key Points
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FF完成签到,获得积分10
1秒前
1秒前
千幻发布了新的文献求助10
2秒前
leungya发布了新的文献求助10
2秒前
newton完成签到,获得积分10
3秒前
ying发布了新的文献求助10
3秒前
3秒前
huanger完成签到,获得积分10
3秒前
原来完成签到 ,获得积分10
4秒前
JDQW应助whoare采纳,获得10
4秒前
6秒前
卜卜发布了新的文献求助10
6秒前
8秒前
8秒前
NexusExplorer应助nml采纳,获得10
11秒前
weinaonao发布了新的文献求助10
13秒前
nn666发布了新的文献求助10
13秒前
小二郎应助134采纳,获得10
15秒前
Hello应助叶某还得学采纳,获得10
16秒前
闪闪寒荷完成签到 ,获得积分10
17秒前
陈思寒发布了新的文献求助10
22秒前
不爱吃醋完成签到,获得积分10
22秒前
24秒前
nn666完成签到,获得积分10
24秒前
24秒前
26秒前
花花发布了新的文献求助10
28秒前
传奇3应助WANG采纳,获得10
29秒前
29秒前
134发布了新的文献求助10
29秒前
29秒前
chen发布了新的文献求助10
31秒前
斯文败类应助a海w采纳,获得10
31秒前
31秒前
33秒前
33秒前
曾经的少年完成签到,获得积分10
35秒前
fy完成签到,获得积分10
35秒前
35秒前
Hobby完成签到,获得积分0
35秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Very-high-order BVD Schemes Using β-variable THINC Method 990
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Field Guide to Insects of South Africa 660
Mantodea of the World: Species Catalog 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3396729
求助须知:如何正确求助?哪些是违规求助? 3006319
关于积分的说明 8820394
捐赠科研通 2693370
什么是DOI,文献DOI怎么找? 1475314
科研通“疑难数据库(出版商)”最低求助积分说明 682394
邀请新用户注册赠送积分活动 675680