二甲双胍
医学
脑脊液
糖尿病
内科学
神经退行性变
血液蛋白质类
疾病
阿尔茨海默病
蛋白质组学
生物信息学
肿瘤科
药理学
内分泌学
生物
基因
生物化学
作者
Marc S. Weinberg,Yingnan He,Pia Kivisäkk,Steven E. Arnold,Sudeshna Das
摘要
Background: Alzheimer’s disease (AD) is a complicated condition involving multiple metabolic and immunologic pathophysiological processes that can occur with the hallmark pathologies of amyloid-β, tau, and neurodegeneration. Metformin, an anti-diabetes drug, targets several of these disease processes in in vitro and animal studies. However, the effects of metformin on human cerebrospinal fluid (CSF) and plasma proteins as potential biomarkers of treatment remain unexplored. Objective: Using proteomics data from a metformin clinical trial, identify the impact of metformin on plasma and CSF proteins. Methods: We analyzed plasma and CSF proteomics data collected previously (ClinicalTrials.gov identifier: NCT01965756, conducted between 2013 and 2015), and conduced bioinformatics analyses to compare the plasma and CSF protein levels after 8 weeks of metformin or placebo use to their baseline levels in 20 non-diabetic patients with mild cognitive impairment (MCI) and positive AD biomarkers participants. Results: 50 proteins were significantly (unadjusted p < 0.05) altered in plasma and 26 in CSF after 8 weeks of metformin use, with 7 proteins in common (AZU1, CASP-3, CCL11, CCL20, IL32, PRTN3, and REG1A). The correlation between changes in plasma and CSF levels of these 7 proteins after metformin use relative to baseline levels was high (r = 0.98). The proteins also demonstrated temporal stability. Conclusions: Our pilot study is the first to investigate the effect of metformin on plasma and CSF proteins in non-diabetic patients with MCI and positive AD biomarkers and identifies several candidate plasma biomarkers for future clinical trials after confirmatory studies.
科研通智能强力驱动
Strongly Powered by AbleSci AI