Chromium-doped inverse spinel electrocatalysts with optimal orbital occupancy for facilitating reaction kinetics of lithium-oxygen batteries

锂(药物) 双功能 氧化还原 催化作用 过电位 电催化剂 析氧 化学 无机化学 X射线光电子能谱 材料科学 光化学 化学工程 物理化学 电化学 电极 有机化学 内分泌学 医学 生物化学 工程类
作者
Yining Fan,Runjing Li,Chuan Zhao,Anjun Hu,Bo Zhou,Yu Pan,Jiahao Chen,Zhongfu Yan,Mengjiao Liu,Miao He,Jing Liu,Nian Chen,Jianping Long
出处
期刊:Journal of Colloid and Interface Science [Elsevier]
卷期号:645: 439-447 被引量:7
标识
DOI:10.1016/j.jcis.2023.04.128
摘要

Tailored electrocatalysts that can modulate their electronic structure are highly desirable to facilitate the reaction kinetics of oxygen evolution reaction (OER) and oxidation reduction reaction (ORR) in lithium-oxygen batteries (LOB). Although octahedron predominant inverse spinels (e.g., CoFe2O4) have been proposed as promising candidates for catalytic reactions, their performance has remained unsatisfactory. Herein, the chromium (Cr) doped CoFe2O4 nanoflowers (Cr-CoFe2O4) are elaborately constructed on nickel foam as a bifunctional electrocatalyst that drastically improves the performance of LOB. The results show that the partially oxidized Cr6+ stabilizes the cobalt (Co) sites at high-valence and regulates the electronic structure of Co sites, facilitating the oxygen redox kinetics of LOB due to their strong electron-withdrawing capability. Moreover, DFT calculations and ultraviolet photoelectron spectrometer (UPS) results consistently demonstrate that Cr doping optimizes the eg electron filling state of the active octahedral Co sites, significantly improves the covalency of Co-O bonds, and enhances the degree of Co 3d-O 2p hybrids. As a result, Cr-CoFe2O4 catalyzed LOB can achieve low overpotential (0.48 V), high discharge capacity (22030 mA h g-1) and long-term cycling durability (over 500 cycles at 300 mA g-1). This work promotes the oxygen redox reaction and accelerates the electron transfer between Co ions and oxygen-containing intermediates, highlighting the potential of Cr-CoFe2O4 nanoflowers as bifunctional electrocatalysts for LOB.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
dicy1232003发布了新的文献求助10
刚刚
可爱的函函应助叶子的叶采纳,获得10
1秒前
1秒前
甜崽完成签到,获得积分10
1秒前
李健的小迷弟应助fenghy采纳,获得10
1秒前
善学以致用应助白菜包子采纳,获得10
1秒前
2秒前
2秒前
果果完成签到,获得积分10
3秒前
夜绿发布了新的文献求助10
4秒前
Owen应助拼搏的天奇采纳,获得10
4秒前
甜崽发布了新的文献求助30
5秒前
小蘑菇应助lu采纳,获得10
5秒前
6秒前
隐形曼青应助橙月采纳,获得10
7秒前
bbbaaa发布了新的文献求助10
7秒前
吉祥财子发布了新的文献求助10
7秒前
9秒前
火蓝发布了新的文献求助30
9秒前
深情安青应助求助采纳,获得10
10秒前
10秒前
以南完成签到,获得积分20
11秒前
11秒前
11秒前
xfy发布了新的文献求助10
12秒前
l2023发布了新的文献求助10
13秒前
伟@发布了新的文献求助10
15秒前
追寻紫安应助科研通管家采纳,获得10
15秒前
充电宝应助科研通管家采纳,获得30
15秒前
小二郎应助科研通管家采纳,获得10
15秒前
大模型应助科研通管家采纳,获得10
15秒前
Ava应助科研通管家采纳,获得10
15秒前
JamesPei应助科研通管家采纳,获得10
15秒前
栖梧发布了新的文献求助10
15秒前
华仔应助皮卡皮卡丘采纳,获得10
15秒前
海洋发布了新的文献求助10
16秒前
16秒前
乐乐应助科研通管家采纳,获得10
16秒前
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Analytical Model of Threshold Voltage for Narrow Width Metal Oxide Semiconductor Field Effect Transistors 350
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310444
求助须知:如何正确求助?哪些是违规求助? 2943341
关于积分的说明 8514145
捐赠科研通 2618574
什么是DOI,文献DOI怎么找? 1431211
科研通“疑难数据库(出版商)”最低求助积分说明 664398
邀请新用户注册赠送积分活动 649615