Oxygen Bridge Formed by Doping Nonmetal Atoms into Cationic Vacancies To Enhance the Photoelectrochemical Oxygen Evolution Reaction

材料科学 阳离子聚合 兴奋剂 分解水 密度泛函理论 氧气 化学物理 带隙 电子结构 析氧 纳米技术 光化学 光催化 催化作用 化学工程 光电子学 计算化学 物理化学 电化学 化学 有机化学 电极 高分子化学 工程类
作者
Min Zhang,Yixuan Gao,Qi Zhao,Juanjuan Wei,Lirong Zheng,Jin Ouyang,Na Na
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (30): 36214-36223 被引量:4
标识
DOI:10.1021/acsami.3c06004
摘要

To enhance photoelectrochemical (PEC) water splitting for renewable energy conversion, the conventional strategy is doping nonmetals into anionic vacancies. Compared to anionic vacancies, cationic vacancies are theoretically more effective and reliable for anchoring nonmetals owing to their larger radii and unique advantages. The current research mainly focuses on anionic vacancies, while there are few studies on cationic vacancies due to high formation energy and challenging characterizations by convenient techniques. To overcome the current limitations, nonmetallic S and P atoms are successfully doped into cationic vacancies on the TiO2 surface for tuning local electronic structures. In contrast to the traditional strategy of reducing the bandgaps, nonmetallic atom doping into cationic vacancies facilitates efficient electronic regulation for PEC enhancement without changing the bandgap. The enhanced performance is attributed to the formation of an oxygen bridge, which can accumulate electrons from surrounding S/P atoms. Significantly, the electron-enriched oxygen bridge efficiently transfers electrons to activate reaction site Ti, which can promote the oxygen evolution reaction performance. Density functional theory calculations reveal that the decrease of reaction energy barriers and the optimization of local electron distribution are conducive to electronic transmission. This would provide a high-efficiency electronic tuning strategy for improving PEC performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助qitengzhu采纳,获得10
1秒前
1秒前
Denz完成签到,获得积分10
1秒前
1秒前
111发布了新的文献求助10
1秒前
小槑槑发布了新的文献求助10
1秒前
嘻嘻完成签到 ,获得积分10
1秒前
一刀完成签到,获得积分10
2秒前
高高完成签到,获得积分10
2秒前
Nyah完成签到,获得积分10
3秒前
千日粉完成签到,获得积分10
3秒前
青青子衿发布了新的文献求助10
3秒前
阿庆完成签到,获得积分10
3秒前
九幺完成签到 ,获得积分10
3秒前
heyunxiang完成签到 ,获得积分10
3秒前
hyr完成签到 ,获得积分10
3秒前
简单酒窝完成签到,获得积分20
4秒前
4秒前
xiao发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
szy完成签到,获得积分10
5秒前
G1应助香蕉千风采纳,获得10
5秒前
隐形曼青应助李佳云采纳,获得10
5秒前
小曹完成签到,获得积分10
5秒前
思源应助ydk采纳,获得10
6秒前
kiki完成签到,获得积分10
6秒前
M_完成签到 ,获得积分10
7秒前
认真的一刀完成签到,获得积分0
7秒前
安安发布了新的文献求助10
7秒前
8秒前
研友_pLwpKn发布了新的文献求助30
8秒前
8秒前
huang发布了新的文献求助10
8秒前
标致小土豆完成签到 ,获得积分10
8秒前
欧小仙完成签到,获得积分10
9秒前
FD完成签到,获得积分10
10秒前
无极微光应助止咳宝采纳,获得20
10秒前
yuhui发布了新的文献求助30
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665057
求助须知:如何正确求助?哪些是违规求助? 4874914
关于积分的说明 15111693
捐赠科研通 4824234
什么是DOI,文献DOI怎么找? 2582679
邀请新用户注册赠送积分活动 1536639
关于科研通互助平台的介绍 1495242