亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

BatmanNet: bi-branch masked graph transformer autoencoder for molecular representation

计算机科学 自编码 分子图 人工智能 图形 特征学习 机器学习 变压器 药物发现 代表(政治) 深度学习 模式识别(心理学) 理论计算机科学 化学 物理 政治学 法学 电压 生物化学 政治 量子力学
作者
Zhen Wang,Zhenghe Feng,Yanjun Li,Bowen Li,Yongrui Wang,Sha Chen,Min He,Xin Li
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:25 (1)
标识
DOI:10.1093/bib/bbad400
摘要

Abstract Although substantial efforts have been made using graph neural networks (GNNs) for artificial intelligence (AI)-driven drug discovery, effective molecular representation learning remains an open challenge, especially in the case of insufficient labeled molecules. Recent studies suggest that big GNN models pre-trained by self-supervised learning on unlabeled datasets enable better transfer performance in downstream molecular property prediction tasks. However, the approaches in these studies require multiple complex self-supervised tasks and large-scale datasets , which are time-consuming, computationally expensive and difficult to pre-train end-to-end. Here, we design a simple yet effective self-supervised strategy to simultaneously learn local and global information about molecules, and further propose a novel bi-branch masked graph transformer autoencoder (BatmanNet) to learn molecular representations. BatmanNet features two tailored complementary and asymmetric graph autoencoders to reconstruct the missing nodes and edges, respectively, from a masked molecular graph. With this design, BatmanNet can effectively capture the underlying structure and semantic information of molecules, thus improving the performance of molecular representation. BatmanNet achieves state-of-the-art results for multiple drug discovery tasks, including molecular properties prediction, drug–drug interaction and drug–target interaction, on 13 benchmark datasets, demonstrating its great potential and superiority in molecular representation learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
19秒前
忧郁小鸽子完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
40秒前
cadnash完成签到,获得积分10
59秒前
1分钟前
善学以致用应助桃欣采纳,获得10
1分钟前
馆长应助科研通管家采纳,获得10
1分钟前
馆长应助科研通管家采纳,获得10
1分钟前
1分钟前
iman完成签到,获得积分10
1分钟前
共享精神应助Dreamer.采纳,获得10
2分钟前
愉快的花卷完成签到,获得积分10
2分钟前
田様应助愉快的花卷采纳,获得10
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
Dreamer.发布了新的文献求助10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
cqhecq发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
Virtual应助科研通管家采纳,获得10
3分钟前
桃欣发布了新的文献求助10
3分钟前
桃欣完成签到,获得积分10
3分钟前
5分钟前
FashionBoy应助guhuihaozi采纳,获得10
5分钟前
zzz完成签到,获得积分10
5分钟前
深情安青应助Dreamer.采纳,获得10
5分钟前
5分钟前
馆长应助科研通管家采纳,获得10
5分钟前
馆长应助科研通管家采纳,获得10
5分钟前
伏城完成签到 ,获得积分10
5分钟前
共享精神应助王大纯采纳,获得10
6分钟前
王大纯完成签到,获得积分20
6分钟前
6分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4595660
求助须知:如何正确求助?哪些是违规求助? 4007972
关于积分的说明 12408710
捐赠科研通 3686659
什么是DOI,文献DOI怎么找? 2032005
邀请新用户注册赠送积分活动 1065231
科研通“疑难数据库(出版商)”最低求助积分说明 950587