BatmanNet: bi-branch masked graph transformer autoencoder for molecular representation

计算机科学 自编码 分子图 人工智能 图形 特征学习 机器学习 变压器 药物发现 代表(政治) 深度学习 模式识别(心理学) 理论计算机科学 化学 物理 政治学 法学 电压 生物化学 政治 量子力学
作者
Zhen Wang,Zhenghe Feng,Yanjun Li,Bowen Li,Yongrui Wang,Sha Chen,Min He,Xin Li
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:25 (1)
标识
DOI:10.1093/bib/bbad400
摘要

Abstract Although substantial efforts have been made using graph neural networks (GNNs) for artificial intelligence (AI)-driven drug discovery, effective molecular representation learning remains an open challenge, especially in the case of insufficient labeled molecules. Recent studies suggest that big GNN models pre-trained by self-supervised learning on unlabeled datasets enable better transfer performance in downstream molecular property prediction tasks. However, the approaches in these studies require multiple complex self-supervised tasks and large-scale datasets , which are time-consuming, computationally expensive and difficult to pre-train end-to-end. Here, we design a simple yet effective self-supervised strategy to simultaneously learn local and global information about molecules, and further propose a novel bi-branch masked graph transformer autoencoder (BatmanNet) to learn molecular representations. BatmanNet features two tailored complementary and asymmetric graph autoencoders to reconstruct the missing nodes and edges, respectively, from a masked molecular graph. With this design, BatmanNet can effectively capture the underlying structure and semantic information of molecules, thus improving the performance of molecular representation. BatmanNet achieves state-of-the-art results for multiple drug discovery tasks, including molecular properties prediction, drug–drug interaction and drug–target interaction, on 13 benchmark datasets, demonstrating its great potential and superiority in molecular representation learning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
董泽钰发布了新的文献求助10
刚刚
刚刚
SciGPT应助HHHHH采纳,获得10
1秒前
救驾来迟完成签到,获得积分10
1秒前
zzzz146完成签到,获得积分10
1秒前
慕青应助longer采纳,获得10
1秒前
1秒前
2秒前
2秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
3秒前
Ambi发布了新的文献求助10
3秒前
大盘菜完成签到,获得积分10
3秒前
丘比特应助无444444采纳,获得10
4秒前
4秒前
kustmustshnu发布了新的文献求助10
4秒前
赵永刚发布了新的文献求助10
5秒前
俗签完成签到,获得积分10
5秒前
6秒前
6秒前
huofuman发布了新的文献求助10
6秒前
6秒前
6秒前
CipherSage应助上官老师采纳,获得10
6秒前
风之子发布了新的文献求助10
6秒前
7秒前
完美世界应助小易采纳,获得10
7秒前
dancha发布了新的文献求助30
7秒前
7秒前
上官若男应助老和山采纳,获得10
8秒前
8秒前
独特千风发布了新的文献求助10
8秒前
9秒前
tly完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719629
求助须知:如何正确求助?哪些是违规求助? 5257097
关于积分的说明 15289239
捐赠科研通 4869416
什么是DOI,文献DOI怎么找? 2614807
邀请新用户注册赠送积分活动 1564797
关于科研通互助平台的介绍 1521994