Embedding transparency in artificial intelligence machine learning models: managerial implications on predicting and explaining employee turnover

可解释性 透明度(行为) 嵌入 计算机科学 人力资源管理 机器学习 人工智能 知识管理 计算机安全
作者
Soumyadeb Chowdhury,Sian Joel-Edgar,Prasanta Kumar Dey,Sudeshna Bhattacharya,Alexander A. Kharlamov
出处
期刊:International Journal of Human Resource Management [Informa]
卷期号:34 (14): 2732-2764 被引量:37
标识
DOI:10.1080/09585192.2022.2066981
摘要

Employee turnover (ET) is a major issue faced by firms in all business sectors. Artificial intelligence (AI) machine learning (ML) prediction models can help to classify the likelihood of employees voluntarily departing from employment using historical employee datasets. However, output responses generated by these AI-based ML models lack transparency and interpretability, making it difficult for HR managers to understand the rationale behind the AI predictions. If managers do not understand how and why responses are generated by AI models based on the input datasets, it is unlikely to augment data-driven decision-making and bring value to the organisations. The main purpose of this article is to demonstrate the capability of Local Interpretable Model-Agnostic Explanations (LIME) technique to intuitively explain the ET predictions generated by AI-based ML models for a given employee dataset to HR managers. From a theoretical perspective, we contribute to the International Human Resource Management literature by presenting a conceptual review of AI algorithmic transparency and then discussing its significance to sustain competitive advantage by using the principles of resource-based view theory. We also offer a transparent AI implementation framework using LIME which will provide a useful guide for HR managers to increase the explainability of the AI-based ML models, and therefore mitigate trust issues in data-driven decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
惠耷发布了新的文献求助10
1秒前
lshu文应助吴海彤采纳,获得10
4秒前
Cassie应助cc20231022采纳,获得10
4秒前
飘逸凝丝完成签到 ,获得积分20
4秒前
7秒前
NexusExplorer应助惠耷采纳,获得10
9秒前
南城完成签到 ,获得积分10
9秒前
Christina发布了新的文献求助10
12秒前
LYY应助fifteen采纳,获得10
13秒前
donfern完成签到,获得积分10
17秒前
18秒前
Singularity应助elle采纳,获得10
18秒前
Uniibooy完成签到 ,获得积分10
20秒前
20秒前
violin发布了新的文献求助10
24秒前
shelly完成签到,获得积分10
24秒前
25秒前
duduwind发布了新的文献求助10
25秒前
稳重的若雁应助牛牛采纳,获得10
26秒前
爱静静应助老仙翁采纳,获得10
26秒前
violin完成签到,获得积分10
31秒前
wanci应助机灵自中采纳,获得200
32秒前
慕青应助会飞的姚二狗采纳,获得10
32秒前
33秒前
谦让的振家完成签到,获得积分10
34秒前
Ning_完成签到 ,获得积分10
37秒前
君莫惜给君莫惜的求助进行了留言
38秒前
黑色的白鲸完成签到,获得积分10
38秒前
elle完成签到,获得积分20
41秒前
42秒前
43秒前
43秒前
44秒前
东东完成签到 ,获得积分10
45秒前
充电宝应助牛牛采纳,获得10
45秒前
47秒前
tang发布了新的文献求助10
47秒前
Frank应助lexy采纳,获得10
49秒前
toptop应助番茄采纳,获得10
49秒前
碧蓝黑夜完成签到,获得积分20
50秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140361
求助须知:如何正确求助?哪些是违规求助? 2791184
关于积分的说明 7798192
捐赠科研通 2447619
什么是DOI,文献DOI怎么找? 1301996
科研通“疑难数据库(出版商)”最低求助积分说明 626354
版权声明 601194