MAGE: Multisource Attention Network With Discriminative Graph and Informative Entities for Classification of Hyperspectral and LiDAR Data

计算机科学 激光雷达 判别式 人工智能 高光谱成像 过度拟合 图形 特征提取 特征(语言学) 机器学习 数据挖掘 模式识别(心理学) 遥感 人工神经网络 地质学 理论计算机科学 哲学 语言学
作者
Di Xiu,Zongxu Pan,Yidi Wu,Yuxin Hu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-14 被引量:7
标识
DOI:10.1109/tgrs.2022.3210398
摘要

Land use and land cover (LULC) classification plays a significant role in Earth observation tasks. Nowadays, we can observe the same scene with multiple heterogeneous sensors. Combining diverse information therein for multisource joint classification has become a promising research topic in the remote sensing community. For example, the fusion of hyperspectral image (HSI) and lidar detection and ranging (LiDAR) data has been under active research. The current methodology for HSI and LiDAR joint classification tends to ignore the topological relationship between pixels, limiting the effectiveness of feature extraction and fusion. Another obstacle to satisfactory performance is the scarcity of annotated data. To overcome the above challenges, this article proposes a multisource attention network called MAGE to improve the collective classification. We use a semi-supervised graph transductive module to underline the relevance among pixels by explicitly constructing a multimodal adjacency matrix. Specifically, MAGE designs a self-supervised feature extraction module for pre-training, mitigating the dependence on annotated samples and alleviating the common overfitting and over-smoothing problems encountered by the deep graph neural network (GNN). The experimental results of three standard datasets, i.e., MUUFL, Trento, and Houston, demonstrate the effectiveness of the proposed approach. In particular, MAGE achieves an overall accuracy of 95.26% and an average accuracy of 96.27% on the challenging MUUFL dataset, surpassing the state-of-the-art methods. The code and models are publicly available at https://github.com/d1x1u/MAGE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jason完成签到,获得积分10
刚刚
4秒前
Akim应助张朝程采纳,获得10
4秒前
传奇3应助zzzzzaaw采纳,获得10
6秒前
7秒前
瘦瘦友易发布了新的文献求助10
12秒前
科研混子发布了新的文献求助10
13秒前
ding应助唐盼烟采纳,获得10
13秒前
13秒前
听听那冷雨完成签到,获得积分10
13秒前
buno应助科研通管家采纳,获得10
13秒前
JamesPei应助科研通管家采纳,获得10
13秒前
NexusExplorer应助科研通管家采纳,获得10
13秒前
传奇3应助科研通管家采纳,获得10
13秒前
Hello应助科研通管家采纳,获得10
13秒前
shenmizhe完成签到,获得积分10
15秒前
yar应助明芬采纳,获得10
17秒前
柚子完成签到 ,获得积分10
17秒前
18秒前
pokikiii发布了新的文献求助10
19秒前
多情高丽完成签到 ,获得积分10
19秒前
22秒前
我是老大应助瘦瘦友易采纳,获得10
22秒前
潇洒的白凝发布了新的文献求助200
23秒前
GOODYUE发布了新的文献求助10
23秒前
小蘑菇发布了新的文献求助10
25秒前
lol发布了新的文献求助10
25秒前
28秒前
29秒前
LYQ完成签到,获得积分10
29秒前
isonomia完成签到,获得积分10
29秒前
Amorino完成签到,获得积分10
31秒前
33秒前
小蘑菇完成签到,获得积分20
34秒前
35秒前
SciGPT应助矮小的乐菱采纳,获得10
35秒前
36秒前
Ava应助明芬采纳,获得10
41秒前
ooseabiscuit完成签到,获得积分10
43秒前
xio完成签到,获得积分20
44秒前
高分求助中
Востребованный временем 2500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
Encyclopedia of Mental Health Reference Work 500
The Restraining Hand: Captivity for Christ in China 500
Mercury and Silver Mining in the Colonial Atlantic 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3376630
求助须知:如何正确求助?哪些是违规求助? 2992543
关于积分的说明 8751666
捐赠科研通 2676923
什么是DOI,文献DOI怎么找? 1466340
科研通“疑难数据库(出版商)”最低求助积分说明 678270
邀请新用户注册赠送积分活动 669884