LKG-Net: lightweight keratoconus grading network based on corneal topography

人工智能 计算机科学 分级(工程) 圆锥角膜 模式识别(心理学) 特征提取 卷积神经网络 角膜 算法 数学 眼科 医学 工程类 土木工程
作者
Song Gao,Yingjie Chen,Fei Shi,Yuanyuan Peng,Chenan Xu,Zhongyue Chen,Weifang Zhu,Xin Xu,Wei Tang,Zhiwei Tan,Yue Xu,Yujie Ren,Qian Zhang,Xinjian Chen
出处
期刊:Biomedical Optics Express [The Optical Society]
卷期号:14 (2): 799-799 被引量:1
标识
DOI:10.1364/boe.480564
摘要

Keratoconus (KC) is a noninflammatory ectatic disease characterized by progressive thinning and an apical cone-shaped protrusion of the cornea. In recent years, more and more researchers have been committed to automatic and semi-automatic KC detection based on corneal topography. However, there are few studies about the severity grading of KC, which is particularly important for the treatment of KC. In this work, we propose a lightweight KC grading network (LKG-Net) for 4-level KC grading (Normal, Mild, Moderate, and Severe). First of all, we use depth-wise separable convolution to design a novel feature extraction block based on the self-attention mechanism, which can not only extract rich features but also reduce feature redundancy and greatly reduce the number of parameters. Then, to improve the model performance, a multi-level feature fusion module is proposed to fuse features from the upper and lower levels to obtain more abundant and effective features. The proposed LKG-Net was evaluated on the corneal topography of 488 eyes from 281 people with 4-fold cross-validation. Compared with other state-of-the-art classification methods, the proposed method achieves 89.55% for weighted recall (W_R), 89.98% for weighted precision (W_P), 89.50% for weighted F1 score (W_F1) and 94.38% for Kappa, respectively. In addition, the LKG-Net is also evaluated on KC screening, and the experimental results show the effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pappper完成签到,获得积分10
刚刚
彭于晏应助01259采纳,获得30
刚刚
乐观的小鸡完成签到,获得积分10
1秒前
1秒前
传奇3应助好玩和有趣采纳,获得10
2秒前
js完成签到,获得积分10
2秒前
乐山乐水发布了新的文献求助10
2秒前
3秒前
明理的蜗牛完成签到,获得积分10
4秒前
4秒前
jiayouYi完成签到,获得积分10
5秒前
sunzhiyu233完成签到,获得积分20
5秒前
怡然菲音发布了新的文献求助10
5秒前
袁访天完成签到,获得积分10
6秒前
英姑应助RONG采纳,获得10
6秒前
6秒前
7秒前
冷酷尔琴发布了新的文献求助10
8秒前
8秒前
8秒前
kai_完成签到,获得积分10
9秒前
Tikh完成签到,获得积分10
9秒前
充电宝应助通~采纳,获得10
9秒前
科研雷锋发布了新的文献求助10
10秒前
坚强亦丝应助香蕉初瑶采纳,获得10
10秒前
wormzjl完成签到,获得积分10
11秒前
朱先生完成签到 ,获得积分10
11秒前
饱满的大碗完成签到 ,获得积分10
11秒前
12秒前
ding应助Ymj采纳,获得10
12秒前
12秒前
科研欣路发布了新的文献求助30
12秒前
13秒前
111发布了新的文献求助10
13秒前
田様应助冷酷尔琴采纳,获得10
13秒前
李健应助杰克李李采纳,获得10
14秒前
14秒前
Nefelibata发布了新的文献求助10
14秒前
非常可爱应助时尚的书易采纳,获得20
14秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740