Effects of deep learning on radiologists’ and radiology residents’ performance in identifying esophageal cancer on CT

医学 食管癌 深度学习 考试(生物学) 放射科 癌症 试验装置 对比度(视觉) 人工智能 内科学 计算机科学 古生物学 生物
作者
Koichiro Yasaka,Sosuke Hatano,Masumi Mizuki,Naomasa Okimoto,Takatoshi Kubo,Eisuke Shibata,Takeyuki Watadani,Osamu Abe
出处
期刊:British Journal of Radiology [British Institute of Radiology]
卷期号:96 (1150) 被引量:6
标识
DOI:10.1259/bjr.20220685
摘要

To investigate the effectiveness of a deep learning model in helping radiologists or radiology residents detect esophageal cancer on contrast-enhanced CT images.This retrospective study included 250 and 25 patients with and without esophageal cancer, respectively, who underwent contrast-enhanced CT between December 2014 and May 2021 (mean age, 67.9 ± 10.3 years; 233 men). A deep learning model was developed using data from 200 and 25 patients with esophageal cancer as training and validation data sets, respectively. The model was then applied to the test data set, consisting of additional 25 and 25 patients with and without esophageal cancer, respectively. Four readers (one radiologist and three radiology residents) independently registered the likelihood of malignant lesions using a 3-point scale in the test data set. After the scorings were completed, the readers were allowed to reference to the deep learning model results and modify their scores, when necessary.The area under the curve (AUC) of the deep learning model was 0.95 and 0.98 in the image- and patient-based analyses, respectively. By referencing to the deep learning model results, the AUCs for the readers were improved from 0.96/0.93/0.96/0.93 to 0.97/0.95/0.99/0.96 (p = 0.100/0.006/<0.001/<0.001, DeLong's test) in the image-based analysis, with statistically significant differences noted for the three less-experienced readers. Furthermore, the AUCs for the readers tended to improve from 0.98/0.96/0.98/0.94 to 1.00/1.00/1.00/1.00 (p = 0.317/0.149/0.317/0.073, DeLong's test) in the patient-based analysis.The deep learning model mainly helped less-experienced readers improve their performance in detecting esophageal cancer on contrast-enhanced CT.A deep learning model could mainly help less-experienced readers to detect esophageal cancer by improving their diagnostic confidence and diagnostic performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小董哥完成签到,获得积分10
刚刚
自觉馒头发布了新的文献求助10
刚刚
小马哥发布了新的文献求助10
刚刚
刚刚
现代清涟完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
3秒前
管理想完成签到,获得积分10
3秒前
Lyric_完成签到,获得积分10
3秒前
向日葵发布了新的文献求助30
3秒前
张欣宇完成签到,获得积分10
3秒前
Jay发布了新的文献求助10
4秒前
有机合成发布了新的文献求助10
5秒前
123发布了新的文献求助10
6秒前
Aaronzxy发布了新的文献求助10
6秒前
6秒前
儒雅惜海发布了新的文献求助10
7秒前
Changlin发布了新的文献求助10
7秒前
8秒前
MAIDANG完成签到,获得积分10
8秒前
anran完成签到 ,获得积分10
9秒前
顾子墨完成签到,获得积分10
9秒前
思源应助小马哥采纳,获得10
9秒前
白白熊完成签到 ,获得积分10
10秒前
在水一方应助无私的易蓉采纳,获得10
10秒前
情怀应助VDC采纳,获得10
10秒前
科研通AI2S应助会飞的野马采纳,获得10
10秒前
我爱读文献完成签到,获得积分10
11秒前
11秒前
nihao完成签到,获得积分10
11秒前
半只橙发布了新的文献求助10
11秒前
11秒前
lyt发布了新的文献求助10
12秒前
12秒前
华北走地鸡完成签到,获得积分10
12秒前
薄荷味的soda完成签到,获得积分10
13秒前
傻傻的芷巧完成签到,获得积分10
13秒前
Airi完成签到,获得积分10
13秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159243
求助须知:如何正确求助?哪些是违规求助? 2810372
关于积分的说明 7887509
捐赠科研通 2469200
什么是DOI,文献DOI怎么找? 1314702
科研通“疑难数据库(出版商)”最低求助积分说明 630697
版权声明 602012