亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Effects of deep learning on radiologists’ and radiology residents’ performance in identifying esophageal cancer on CT

医学 食管癌 深度学习 考试(生物学) 放射科 癌症 试验装置 对比度(视觉) 人工智能 内科学 计算机科学 古生物学 生物
作者
Koichiro Yasaka,Sosuke Hatano,Masumi Mizuki,Naomasa Okimoto,Takatoshi Kubo,Eisuke Shibata,Takeyuki Watadani,Osamu Abe
出处
期刊:British Journal of Radiology [Wiley]
卷期号:96 (1150) 被引量:6
标识
DOI:10.1259/bjr.20220685
摘要

To investigate the effectiveness of a deep learning model in helping radiologists or radiology residents detect esophageal cancer on contrast-enhanced CT images.This retrospective study included 250 and 25 patients with and without esophageal cancer, respectively, who underwent contrast-enhanced CT between December 2014 and May 2021 (mean age, 67.9 ± 10.3 years; 233 men). A deep learning model was developed using data from 200 and 25 patients with esophageal cancer as training and validation data sets, respectively. The model was then applied to the test data set, consisting of additional 25 and 25 patients with and without esophageal cancer, respectively. Four readers (one radiologist and three radiology residents) independently registered the likelihood of malignant lesions using a 3-point scale in the test data set. After the scorings were completed, the readers were allowed to reference to the deep learning model results and modify their scores, when necessary.The area under the curve (AUC) of the deep learning model was 0.95 and 0.98 in the image- and patient-based analyses, respectively. By referencing to the deep learning model results, the AUCs for the readers were improved from 0.96/0.93/0.96/0.93 to 0.97/0.95/0.99/0.96 (p = 0.100/0.006/<0.001/<0.001, DeLong's test) in the image-based analysis, with statistically significant differences noted for the three less-experienced readers. Furthermore, the AUCs for the readers tended to improve from 0.98/0.96/0.98/0.94 to 1.00/1.00/1.00/1.00 (p = 0.317/0.149/0.317/0.073, DeLong's test) in the patient-based analysis.The deep learning model mainly helped less-experienced readers improve their performance in detecting esophageal cancer on contrast-enhanced CT.A deep learning model could mainly help less-experienced readers to detect esophageal cancer by improving their diagnostic confidence and diagnostic performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助葛力采纳,获得10
13秒前
老迟到的梦旋完成签到 ,获得积分10
14秒前
一只小锦鲤完成签到 ,获得积分10
22秒前
Licyan完成签到,获得积分10
51秒前
1分钟前
1分钟前
容若发布了新的文献求助10
1分钟前
1分钟前
1分钟前
上官若男应助爱听歌笑寒采纳,获得10
1分钟前
jimmy_bytheway完成签到,获得积分0
1分钟前
1分钟前
1分钟前
容若发布了新的文献求助10
1分钟前
1分钟前
重庆森林发布了新的文献求助10
1分钟前
容若发布了新的文献求助10
1分钟前
重庆森林完成签到,获得积分20
1分钟前
jinyue完成签到 ,获得积分10
2分钟前
huxuehong完成签到 ,获得积分10
2分钟前
三金发布了新的文献求助200
2分钟前
2分钟前
怕孤独的白凡完成签到 ,获得积分10
2分钟前
JamesPei应助爱听歌笑寒采纳,获得10
2分钟前
量子星尘发布了新的文献求助20
2分钟前
2分钟前
2分钟前
2分钟前
激情的冷风完成签到,获得积分20
2分钟前
Docgyj完成签到 ,获得积分0
2分钟前
3分钟前
容若发布了新的文献求助10
3分钟前
搜集达人应助陶1122采纳,获得10
3分钟前
3分钟前
共享精神应助科研通管家采纳,获得10
3分钟前
3分钟前
小马甲应助爱听歌笑寒采纳,获得10
3分钟前
爱听歌笑寒完成签到,获得积分10
3分钟前
3分钟前
容若发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4611282
求助须知:如何正确求助?哪些是违规求助? 4016845
关于积分的说明 12435757
捐赠科研通 3698687
什么是DOI,文献DOI怎么找? 2039615
邀请新用户注册赠送积分活动 1072446
科研通“疑难数据库(出版商)”最低求助积分说明 956127