Effects of deep learning on radiologists’ and radiology residents’ performance in identifying esophageal cancer on CT

医学 食管癌 深度学习 考试(生物学) 放射科 癌症 试验装置 对比度(视觉) 人工智能 内科学 计算机科学 生物 古生物学
作者
Koichiro Yasaka,Sosuke Hatano,Masumi Mizuki,Naomasa Okimoto,Takatoshi Kubo,Eisuke Shibata,Takeyuki Watadani,Osamu Abe
出处
期刊:British Journal of Radiology [Wiley]
卷期号:96 (1150) 被引量:6
标识
DOI:10.1259/bjr.20220685
摘要

To investigate the effectiveness of a deep learning model in helping radiologists or radiology residents detect esophageal cancer on contrast-enhanced CT images.This retrospective study included 250 and 25 patients with and without esophageal cancer, respectively, who underwent contrast-enhanced CT between December 2014 and May 2021 (mean age, 67.9 ± 10.3 years; 233 men). A deep learning model was developed using data from 200 and 25 patients with esophageal cancer as training and validation data sets, respectively. The model was then applied to the test data set, consisting of additional 25 and 25 patients with and without esophageal cancer, respectively. Four readers (one radiologist and three radiology residents) independently registered the likelihood of malignant lesions using a 3-point scale in the test data set. After the scorings were completed, the readers were allowed to reference to the deep learning model results and modify their scores, when necessary.The area under the curve (AUC) of the deep learning model was 0.95 and 0.98 in the image- and patient-based analyses, respectively. By referencing to the deep learning model results, the AUCs for the readers were improved from 0.96/0.93/0.96/0.93 to 0.97/0.95/0.99/0.96 (p = 0.100/0.006/<0.001/<0.001, DeLong's test) in the image-based analysis, with statistically significant differences noted for the three less-experienced readers. Furthermore, the AUCs for the readers tended to improve from 0.98/0.96/0.98/0.94 to 1.00/1.00/1.00/1.00 (p = 0.317/0.149/0.317/0.073, DeLong's test) in the patient-based analysis.The deep learning model mainly helped less-experienced readers improve their performance in detecting esophageal cancer on contrast-enhanced CT.A deep learning model could mainly help less-experienced readers to detect esophageal cancer by improving their diagnostic confidence and diagnostic performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NSS完成签到,获得积分0
刚刚
小方完成签到,获得积分10
1秒前
1秒前
天天快乐应助娇气的雁兰采纳,获得10
2秒前
3秒前
3秒前
慕青应助杨伊森采纳,获得10
5秒前
llll完成签到 ,获得积分10
5秒前
王博林发布了新的文献求助10
6秒前
高高的寒云完成签到 ,获得积分10
6秒前
Dritsw应助陶1122采纳,获得10
7秒前
Zert发布了新的文献求助10
7秒前
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
Akim应助科研通管家采纳,获得10
8秒前
ZZC发布了新的文献求助10
8秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
斯文败类应助科研通管家采纳,获得30
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
8R60d8应助科研通管家采纳,获得20
9秒前
9秒前
9秒前
桐桐应助科研通管家采纳,获得10
9秒前
深情安青应助小方采纳,获得10
12秒前
英姑应助sylnd126采纳,获得10
14秒前
温暖的以旋完成签到,获得积分10
14秒前
14秒前
Zert完成签到,获得积分10
14秒前
诸青梦完成签到 ,获得积分10
15秒前
15秒前
彩色的电脑完成签到,获得积分10
15秒前
15秒前
15秒前
开朗的尔风完成签到,获得积分10
18秒前
所所应助ltt采纳,获得10
19秒前
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966147
求助须知:如何正确求助?哪些是违规求助? 3511532
关于积分的说明 11158765
捐赠科研通 3246148
什么是DOI,文献DOI怎么找? 1793309
邀请新用户注册赠送积分活动 874295
科研通“疑难数据库(出版商)”最低求助积分说明 804343