Effects of deep learning on radiologists’ and radiology residents’ performance in identifying esophageal cancer on CT

医学 食管癌 深度学习 考试(生物学) 放射科 癌症 试验装置 对比度(视觉) 人工智能 内科学 计算机科学 古生物学 生物
作者
Koichiro Yasaka,Sosuke Hatano,Masumi Mizuki,Naomasa Okimoto,Takatoshi Kubo,Eisuke Shibata,Takeyuki Watadani,Osamu Abe
出处
期刊:British Journal of Radiology [British Institute of Radiology]
卷期号:96 (1150) 被引量:6
标识
DOI:10.1259/bjr.20220685
摘要

To investigate the effectiveness of a deep learning model in helping radiologists or radiology residents detect esophageal cancer on contrast-enhanced CT images.This retrospective study included 250 and 25 patients with and without esophageal cancer, respectively, who underwent contrast-enhanced CT between December 2014 and May 2021 (mean age, 67.9 ± 10.3 years; 233 men). A deep learning model was developed using data from 200 and 25 patients with esophageal cancer as training and validation data sets, respectively. The model was then applied to the test data set, consisting of additional 25 and 25 patients with and without esophageal cancer, respectively. Four readers (one radiologist and three radiology residents) independently registered the likelihood of malignant lesions using a 3-point scale in the test data set. After the scorings were completed, the readers were allowed to reference to the deep learning model results and modify their scores, when necessary.The area under the curve (AUC) of the deep learning model was 0.95 and 0.98 in the image- and patient-based analyses, respectively. By referencing to the deep learning model results, the AUCs for the readers were improved from 0.96/0.93/0.96/0.93 to 0.97/0.95/0.99/0.96 (p = 0.100/0.006/<0.001/<0.001, DeLong's test) in the image-based analysis, with statistically significant differences noted for the three less-experienced readers. Furthermore, the AUCs for the readers tended to improve from 0.98/0.96/0.98/0.94 to 1.00/1.00/1.00/1.00 (p = 0.317/0.149/0.317/0.073, DeLong's test) in the patient-based analysis.The deep learning model mainly helped less-experienced readers improve their performance in detecting esophageal cancer on contrast-enhanced CT.A deep learning model could mainly help less-experienced readers to detect esophageal cancer by improving their diagnostic confidence and diagnostic performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
oldhope发布了新的文献求助10
3秒前
123完成签到,获得积分10
4秒前
Kiry完成签到 ,获得积分10
4秒前
书是人类进步的阶梯完成签到 ,获得积分10
4秒前
pangguanzhe发布了新的文献求助10
6秒前
6秒前
pengivy完成签到,获得积分10
7秒前
哈利波特完成签到,获得积分10
8秒前
丘比特应助miao采纳,获得10
9秒前
羽羊周周完成签到,获得积分20
9秒前
9秒前
华盛顿关注了科研通微信公众号
9秒前
科研通AI6应助lankeren采纳,获得10
11秒前
时迁完成签到 ,获得积分10
12秒前
12秒前
领导范儿应助胡萝卜叶子采纳,获得10
12秒前
wanci应助害羞的诺言采纳,获得10
13秒前
15秒前
kate完成签到,获得积分10
16秒前
ECHO发布了新的文献求助10
16秒前
16秒前
量子星尘发布了新的文献求助10
18秒前
朱春阳发布了新的文献求助10
20秒前
20秒前
moon发布了新的文献求助30
21秒前
BowieHuang应助从容的方盒采纳,获得10
21秒前
22秒前
22秒前
伶俐的静柏完成签到,获得积分10
26秒前
华盛顿发布了新的文献求助10
27秒前
搜集达人应助天一采纳,获得10
27秒前
miao发布了新的文献求助10
27秒前
27秒前
唐小鸭完成签到,获得积分10
27秒前
Ava应助朱春阳采纳,获得10
28秒前
王某人完成签到 ,获得积分10
28秒前
29秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600865
求助须知:如何正确求助?哪些是违规求助? 4686434
关于积分的说明 14843611
捐赠科研通 4678481
什么是DOI,文献DOI怎么找? 2539007
邀请新用户注册赠送积分活动 1505954
关于科研通互助平台的介绍 1471241