Artificial intelligence predicts lung cancer radiotherapy response: A meta-analysis

肺癌 医学 荟萃分析 置信区间 危险系数 内科学 放射治疗 接收机工作特性 肿瘤科 出版偏见 癌症
作者
Wenmin Xing,Wenyan Gao,Xiaoling Lv,Zhenlei Zhao,Xiaogang Xu,Zhibing Wu,Genxiang Mao,Jun Chen
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:142: 102585-102585 被引量:7
标识
DOI:10.1016/j.artmed.2023.102585
摘要

Artificial intelligence (AI) technology has clustered patients based on clinical features into sub-clusters to stratify high-risk and low-risk groups to predict outcomes in lung cancer after radiotherapy and has gained much more attention in recent years. Given that the conclusions vary considerably, this meta-analysis was conducted to investigate the combined predictive effect of AI models on lung cancer. This study was performed according to PRISMA guidelines. PubMed, ISI Web of Science, and Embase databases were searched for relevant literature. Outcomes, including overall survival (OS), disease-free survival (DFS), progression-free survival (PFS), and local control (LC), were predicted using AI models in patients with lung cancer after radiotherapy, and were used to calculate the pooled effect. Quality, heterogeneity, and publication bias of the included studies were also evaluated. Eighteen articles with 4719 patients were eligible for this meta-analysis. The combined hazard ratios (HRs) of the included studies for OS, LC, PFS, and DFS of lung cancer patients were 2.55 (95 % confidence interval (CI) = 1.73–3.76), 2.45 (95 % CI = 0.78–7.64), 3.84 (95 % CI = 2.20–6.68), and 2.66 (95 % CI = 0.96–7.34), respectively. The combined area under the receiver operating characteristics curve (AUC) of the included articles on OS and LC in patients with lung cancer was 0.75 (95 % CI = 0.67–0.84), and 0.80 (95%CI = 0.0.68–0.95), respectively. The clinical feasibility of predicting outcomes using AI models after radiotherapy in patients with lung cancer was demonstrated. Large-scale, prospective, multicenter studies should be conducted to more accurately predict the outcomes in patients with lung cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
若n完成签到 ,获得积分10
1秒前
1秒前
2秒前
迷人芹菜发布了新的文献求助10
2秒前
Orange应助宋赛创采纳,获得10
3秒前
素直完成签到,获得积分10
3秒前
何潼完成签到,获得积分10
5秒前
Anima应助钰泠采纳,获得10
5秒前
浮游应助绘海采纳,获得10
6秒前
风风风发布了新的文献求助10
7秒前
7秒前
8秒前
张糊糊发布了新的文献求助10
8秒前
hhh完成签到,获得积分10
8秒前
8秒前
李琛璐发布了新的文献求助10
9秒前
wanci应助濮阳灵竹采纳,获得10
10秒前
阔达蓝血完成签到,获得积分10
10秒前
所所应助庄庄采纳,获得10
11秒前
领导范儿应助fanzi采纳,获得10
11秒前
阿菜完成签到,获得积分10
12秒前
8R60d8应助jia采纳,获得10
12秒前
华仔应助秋丶凡尘采纳,获得10
12秒前
Meng完成签到,获得积分10
13秒前
李广辉发布了新的文献求助10
13秒前
13秒前
浮游应助元谷雪采纳,获得10
13秒前
giao发布了新的文献求助10
13秒前
JoaquinH完成签到,获得积分10
14秒前
情怀应助顺顺尼采纳,获得10
14秒前
汉堡包应助清脆惜寒采纳,获得10
15秒前
希望天下0贩的0应助xiluo采纳,获得10
15秒前
16秒前
zcs完成签到,获得积分10
16秒前
16秒前
我是老大应助可可采纳,获得10
16秒前
17秒前
打打应助终陌采纳,获得10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5285822
求助须知:如何正确求助?哪些是违规求助? 4438771
关于积分的说明 13818542
捐赠科研通 4320267
什么是DOI,文献DOI怎么找? 2371363
邀请新用户注册赠送积分活动 1366932
关于科研通互助平台的介绍 1330369