亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artificial intelligence predicts lung cancer radiotherapy response: A meta-analysis

肺癌 医学 荟萃分析 置信区间 危险系数 内科学 放射治疗 接收机工作特性 肿瘤科 出版偏见 癌症
作者
Wenmin Xing,Wenyan Gao,Xiaoling Lv,Zhenlei Zhao,Xiaogang Xu,Zhibing Wu,Genxiang Mao,Jun Chen
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:142: 102585-102585 被引量:2
标识
DOI:10.1016/j.artmed.2023.102585
摘要

Artificial intelligence (AI) technology has clustered patients based on clinical features into sub-clusters to stratify high-risk and low-risk groups to predict outcomes in lung cancer after radiotherapy and has gained much more attention in recent years. Given that the conclusions vary considerably, this meta-analysis was conducted to investigate the combined predictive effect of AI models on lung cancer. This study was performed according to PRISMA guidelines. PubMed, ISI Web of Science, and Embase databases were searched for relevant literature. Outcomes, including overall survival (OS), disease-free survival (DFS), progression-free survival (PFS), and local control (LC), were predicted using AI models in patients with lung cancer after radiotherapy, and were used to calculate the pooled effect. Quality, heterogeneity, and publication bias of the included studies were also evaluated. Eighteen articles with 4719 patients were eligible for this meta-analysis. The combined hazard ratios (HRs) of the included studies for OS, LC, PFS, and DFS of lung cancer patients were 2.55 (95 % confidence interval (CI) = 1.73–3.76), 2.45 (95 % CI = 0.78–7.64), 3.84 (95 % CI = 2.20–6.68), and 2.66 (95 % CI = 0.96–7.34), respectively. The combined area under the receiver operating characteristics curve (AUC) of the included articles on OS and LC in patients with lung cancer was 0.75 (95 % CI = 0.67–0.84), and 0.80 (95%CI = 0.0.68–0.95), respectively. The clinical feasibility of predicting outcomes using AI models after radiotherapy in patients with lung cancer was demonstrated. Large-scale, prospective, multicenter studies should be conducted to more accurately predict the outcomes in patients with lung cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平淡幻枫发布了新的文献求助10
3秒前
Owen应助平淡幻枫采纳,获得10
12秒前
lll完成签到,获得积分10
15秒前
lll发布了新的文献求助10
19秒前
上官若男应助lll采纳,获得10
30秒前
深情安青应助科研通管家采纳,获得10
34秒前
Mindray完成签到,获得积分10
59秒前
小汤完成签到 ,获得积分10
1分钟前
2分钟前
wangnn发布了新的文献求助30
2分钟前
wangnn完成签到,获得积分10
2分钟前
SciGPT应助科研通管家采纳,获得10
2分钟前
隐形曼青应助江彪采纳,获得10
2分钟前
2分钟前
江彪发布了新的文献求助10
3分钟前
3分钟前
一剑白完成签到 ,获得积分10
3分钟前
。。完成签到 ,获得积分10
3分钟前
charliechen完成签到 ,获得积分10
3分钟前
传奇完成签到 ,获得积分10
4分钟前
过时的柚子完成签到,获得积分10
4分钟前
4分钟前
NexusExplorer应助科研通管家采纳,获得10
4分钟前
NexusExplorer应助科研通管家采纳,获得10
4分钟前
白华苍松发布了新的文献求助10
4分钟前
JamesPei应助andrele采纳,获得10
4分钟前
4分钟前
5分钟前
5分钟前
充电宝应助小鲤鱼在睡觉采纳,获得10
5分钟前
小鲤鱼在睡觉完成签到,获得积分10
5分钟前
5分钟前
andrele发布了新的文献求助30
5分钟前
CHL完成签到 ,获得积分10
6分钟前
情怀应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
6分钟前
andrele发布了新的文献求助10
6分钟前
8分钟前
脑洞疼应助科研通管家采纳,获得20
8分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137011
求助须知:如何正确求助?哪些是违规求助? 2787960
关于积分的说明 7784196
捐赠科研通 2444060
什么是DOI,文献DOI怎么找? 1299705
科研通“疑难数据库(出版商)”最低求助积分说明 625497
版权声明 600997