A Pareto dominance relation based on reference vectors for evolutionary many-objective optimization

帕累托原理 多目标优化 计算机科学 优势(遗传学) 关系(数据库) 数学优化 进化算法 数学 人工智能 数据挖掘 生物 机器学习 生物化学 基因
作者
Shuai Wang,Hui Wang,Zichen Wei,Feng Wang,Qingling Zhu,Jia Zhao,Zhihua Cui
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:157: 111505-111505 被引量:10
标识
DOI:10.1016/j.asoc.2024.111505
摘要

Pareto dominance based approach is a classical method for solving multi-objective optimization problems (MOPs). However, as the number of objectives increases, the selection pressure drops sharply. Solutions with good convergence and diversity are hardly obtained. To tackle these issues, this paper proposes a Pareto dominance relation based on reference vectors (called PRV-dominance) for evolutionary many-objective optimization. In PRV-dominance, solutions in the population are divided into several subregions according to a set of uniform reference vectors. To enhance the convergence, a new convergence metric based on the ranking of objective function values is designed to determine the dominance relationship between two solutions. Then, the density in different subregions is considered to maintain the diversity. In order to verify the performance of our approach, WFG and MaF benchmark problems with 3, 5, 8, and 15 objectives are utilized. Experimental results demonstrate that the proposed PRV-dominance outperforms eight existing dominance relations in balancing convergence and diversity. An improved NSGA-II is suggested based on the proposed PRV-dominance, which shows the competitive performance when compared with six other state-of-the-art algorithms in solving many-objective optimization problems (MaOPs). The effectiveness of the proposed PRV-dominance is also verified on two other existing many-objective evolutionary algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南国之霄发布了新的文献求助10
1秒前
czy发布了新的文献求助10
1秒前
临诗完成签到,获得积分10
1秒前
浑灵安发布了新的文献求助10
2秒前
木头人应助宋某采纳,获得10
2秒前
2秒前
3秒前
Yogita完成签到,获得积分10
4秒前
姜茶完成签到 ,获得积分10
5秒前
5秒前
桐桐应助初彤采纳,获得10
6秒前
林中雨发布了新的文献求助10
6秒前
华仔应助SQDHZJ采纳,获得10
6秒前
wx发布了新的文献求助10
7秒前
8秒前
朴素的松鼠完成签到,获得积分10
11秒前
hujushan完成签到,获得积分10
14秒前
牙牙完成签到,获得积分10
15秒前
16秒前
18秒前
ShuY完成签到,获得积分10
18秒前
宋某完成签到,获得积分20
18秒前
CodeCraft应助归燕采纳,获得10
21秒前
three发布了新的文献求助30
22秒前
小肥吴完成签到,获得积分10
22秒前
22秒前
qqqqqqq发布了新的文献求助10
23秒前
SQDHZJ发布了新的文献求助10
26秒前
123完成签到,获得积分10
27秒前
qy完成签到 ,获得积分10
27秒前
yiseeya应助元谷雪采纳,获得10
27秒前
28秒前
南河完成签到 ,获得积分10
29秒前
29秒前
aaa完成签到,获得积分10
29秒前
jiajia完成签到 ,获得积分10
29秒前
DIngqin应助biubiudiu采纳,获得20
30秒前
天天快乐应助biubiudiu采纳,获得10
30秒前
充电宝应助biubiudiu采纳,获得10
30秒前
Auston_zhong应助biubiudiu采纳,获得20
30秒前
高分求助中
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Where and how to use plate heat exchangers 350
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
机器学习与人工智能:从理论到实践 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3706097
求助须知:如何正确求助?哪些是违规求助? 3255274
关于积分的说明 9893949
捐赠科研通 2967616
什么是DOI,文献DOI怎么找? 1627366
邀请新用户注册赠送积分活动 771471
科研通“疑难数据库(出版商)”最低求助积分说明 743382