MaskArmor: Confidence Masking-based Defense Mechanism for GNN against MIA

遮罩(插图) 机制(生物学) 计算机科学 计算机安全 物理 艺术 量子力学 视觉艺术
作者
Chenyang Chen,Xiaoyu Zhang,Hongbo Qiu,Jian Lou,Zhengyang Liu,Xiaofeng Chen
出处
期刊:Information Sciences [Elsevier]
卷期号:669: 120579-120579
标识
DOI:10.1016/j.ins.2024.120579
摘要

Graph neural networks (GNNs) have demonstrated remarkable performance in diverse graph-related tasks, including node classification, graph classification, link prediction, etc. Previous research has indicated that GNNs are vulnerable to membership inference attacks (MIA). These attacks enable malevolent parties to deduce whether the data points are part of the training set by identifying the output distribution, giving rise to noteworthy privacy apprehensions, especially when the graph contains sensitive data. There have been some studies to defend against graph MIA so far, but they have issues like high computational cost and decreased model accuracy. In this paper, we introduce a novel defense framework called MaskArmor, designed to bolster the privacy and security of GNNs against MIA. The MaskArmor framework encompasses four distinct masking strategies: AdjMask, DTMask, ATMask, and SigMask. These strategies leverage message-passing mechanisms, distillation temperature, hybrid masking, and the Sigmoid function, respectively. The MaskArmor framework effectively obscures the distribution of the model on both the training and non-training samples, rendering it challenging for attackers to ascertain whether particular samples have undergone training. Additionally, MaskArmor sustains the model's precision with negligible computational overhead. Our experiments are implemented across seven benchmark datasets and four GNN networks against shadow-based and threshold-based MIAs, showcasing that MaskArmor substantially heightens GNNs' resilience against MIA while simultaneously preserving accuracy on the initial tasks. It also demonstrates adeptness in countering threshold-based MIA through strategies like AdjMask and ATMask. Exhaustive experimental results substantiate that MaskArmor outperforms alternative existing approaches, maintaining effectiveness and applicability across diverse datasets and attack scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LYZSh发布了新的文献求助10
刚刚
纯真曼文发布了新的文献求助10
刚刚
俊逸随阴完成签到,获得积分20
1秒前
风清扬发布了新的文献求助10
2秒前
阿托品完成签到,获得积分10
2秒前
qinggui127发布了新的文献求助50
3秒前
Ava应助陈陈采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
慕青应助欣喜的向日葵采纳,获得10
4秒前
4秒前
5秒前
5秒前
Jacky_C完成签到,获得积分10
6秒前
cc应助平淡远山采纳,获得50
6秒前
6秒前
6秒前
西出阳关完成签到,获得积分10
6秒前
6秒前
20完成签到,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
小叶完成签到 ,获得积分10
8秒前
wanci应助jiabangou采纳,获得10
9秒前
hhh完成签到,获得积分10
9秒前
悟123发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
10秒前
yujing完成签到,获得积分10
11秒前
sdysdbd发布了新的文献求助30
11秒前
勤奋一一应助szr采纳,获得20
11秒前
11秒前
herschelwu完成签到,获得积分10
11秒前
vcjbbvb发布了新的文献求助10
12秒前
浮游应助念l采纳,获得10
12秒前
风清扬发布了新的文献求助10
12秒前
桐桐应助youyou采纳,获得10
13秒前
上官若男应助Kamchak采纳,获得10
13秒前
s33发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Chemistry and Biochemistry: Research Progress Vol. 7 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684190
求助须知:如何正确求助?哪些是违规求助? 5035564
关于积分的说明 15183757
捐赠科研通 4843529
什么是DOI,文献DOI怎么找? 2596718
邀请新用户注册赠送积分活动 1549418
关于科研通互助平台的介绍 1507952