亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MaskArmor: Confidence Masking-based Defense Mechanism for GNN against MIA

遮罩(插图) 机制(生物学) 计算机科学 计算机安全 物理 艺术 量子力学 视觉艺术
作者
Chenyang Chen,Xiaoyu Zhang,Hongbo Qiu,Jian Lou,Zhengyang Liu,Xiaofeng Chen
出处
期刊:Information Sciences [Elsevier]
卷期号:669: 120579-120579
标识
DOI:10.1016/j.ins.2024.120579
摘要

Graph neural networks (GNNs) have demonstrated remarkable performance in diverse graph-related tasks, including node classification, graph classification, link prediction, etc. Previous research has indicated that GNNs are vulnerable to membership inference attacks (MIA). These attacks enable malevolent parties to deduce whether the data points are part of the training set by identifying the output distribution, giving rise to noteworthy privacy apprehensions, especially when the graph contains sensitive data. There have been some studies to defend against graph MIA so far, but they have issues like high computational cost and decreased model accuracy. In this paper, we introduce a novel defense framework called MaskArmor, designed to bolster the privacy and security of GNNs against MIA. The MaskArmor framework encompasses four distinct masking strategies: AdjMask, DTMask, ATMask, and SigMask. These strategies leverage message-passing mechanisms, distillation temperature, hybrid masking, and the Sigmoid function, respectively. The MaskArmor framework effectively obscures the distribution of the model on both the training and non-training samples, rendering it challenging for attackers to ascertain whether particular samples have undergone training. Additionally, MaskArmor sustains the model's precision with negligible computational overhead. Our experiments are implemented across seven benchmark datasets and four GNN networks against shadow-based and threshold-based MIAs, showcasing that MaskArmor substantially heightens GNNs' resilience against MIA while simultaneously preserving accuracy on the initial tasks. It also demonstrates adeptness in countering threshold-based MIA through strategies like AdjMask and ATMask. Exhaustive experimental results substantiate that MaskArmor outperforms alternative existing approaches, maintaining effectiveness and applicability across diverse datasets and attack scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
知行者完成签到 ,获得积分10
10秒前
12秒前
7and7发布了新的文献求助10
14秒前
28秒前
41秒前
星辰大海应助7and7采纳,获得30
50秒前
Jenny发布了新的文献求助150
50秒前
7and7完成签到,获得积分10
1分钟前
丘比特应助科研通管家采纳,获得20
1分钟前
小吴完成签到,获得积分10
1分钟前
老年学术废物完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
顾矜应助科研通管家采纳,获得10
3分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
脆脆鲨完成签到,获得积分10
4分钟前
噜噜大王发布了新的文献求助10
4分钟前
CipherSage应助oddfunction采纳,获得10
4分钟前
瑾木完成签到,获得积分10
5分钟前
小马甲应助科研通管家采纳,获得10
5分钟前
5分钟前
光亮的半山完成签到,获得积分10
5分钟前
Clay完成签到 ,获得积分10
5分钟前
平常友卉发布了新的文献求助10
5分钟前
5分钟前
5分钟前
oddfunction发布了新的文献求助10
5分钟前
噜噜大王发布了新的文献求助30
5分钟前
噜噜大王发布了新的文献求助30
6分钟前
黄玥完成签到,获得积分10
6分钟前
JamesPei应助诚心山灵采纳,获得30
6分钟前
小铭同学完成签到,获得积分10
6分钟前
6分钟前
智慧金刚完成签到 ,获得积分10
6分钟前
诚心山灵发布了新的文献求助30
6分钟前
7分钟前
噜噜大王发布了新的文献求助10
7分钟前
koko19981228发布了新的文献求助10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568208
求助须知:如何正确求助?哪些是违规求助? 4652699
关于积分的说明 14701943
捐赠科研通 4594540
什么是DOI,文献DOI怎么找? 2521065
邀请新用户注册赠送积分活动 1492895
关于科研通互助平台的介绍 1463698