MaskArmor: Confidence Masking-based Defense Mechanism for GNN against MIA

遮罩(插图) 机制(生物学) 计算机科学 计算机安全 物理 量子力学 艺术 视觉艺术
作者
Chenyang Chen,Xiaoyu Zhang,Hongbo Qiu,Jian Lou,Zhengyang Liu,Xiaofeng Chen
出处
期刊:Information Sciences [Elsevier BV]
卷期号:669: 120579-120579
标识
DOI:10.1016/j.ins.2024.120579
摘要

Graph neural networks (GNNs) have demonstrated remarkable performance in diverse graph-related tasks, including node classification, graph classification, link prediction, etc. Previous research has indicated that GNNs are vulnerable to membership inference attacks (MIA). These attacks enable malevolent parties to deduce whether the data points are part of the training set by identifying the output distribution, giving rise to noteworthy privacy apprehensions, especially when the graph contains sensitive data. There have been some studies to defend against graph MIA so far, but they have issues like high computational cost and decreased model accuracy. In this paper, we introduce a novel defense framework called MaskArmor, designed to bolster the privacy and security of GNNs against MIA. The MaskArmor framework encompasses four distinct masking strategies: AdjMask, DTMask, ATMask, and SigMask. These strategies leverage message-passing mechanisms, distillation temperature, hybrid masking, and the Sigmoid function, respectively. The MaskArmor framework effectively obscures the distribution of the model on both the training and non-training samples, rendering it challenging for attackers to ascertain whether particular samples have undergone training. Additionally, MaskArmor sustains the model's precision with negligible computational overhead. Our experiments are implemented across seven benchmark datasets and four GNN networks against shadow-based and threshold-based MIAs, showcasing that MaskArmor substantially heightens GNNs' resilience against MIA while simultaneously preserving accuracy on the initial tasks. It also demonstrates adeptness in countering threshold-based MIA through strategies like AdjMask and ATMask. Exhaustive experimental results substantiate that MaskArmor outperforms alternative existing approaches, maintaining effectiveness and applicability across diverse datasets and attack scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
薛萌发布了新的文献求助10
刚刚
hannah完成签到,获得积分10
刚刚
墨扬完成签到,获得积分10
1秒前
1秒前
孙sy完成签到 ,获得积分10
2秒前
凯卮完成签到,获得积分10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得30
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
菠萝吹雪完成签到,获得积分10
3秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
研友_nPb9e8完成签到,获得积分10
6秒前
鬼笔环肽完成签到,获得积分10
8秒前
11秒前
不吐泡的玻璃鱼完成签到,获得积分10
13秒前
Somnolence咩完成签到,获得积分10
15秒前
tangzanwayne发布了新的文献求助10
17秒前
英勇的红酒完成签到 ,获得积分10
17秒前
严西完成签到,获得积分10
18秒前
hah发布了新的文献求助30
18秒前
ouyekk完成签到,获得积分10
18秒前
NatureLee完成签到 ,获得积分10
18秒前
明天过后完成签到,获得积分10
18秒前
19秒前
量子星尘发布了新的文献求助10
19秒前
求知者1701完成签到,获得积分10
20秒前
马尔尼菲蓝状菌完成签到,获得积分10
21秒前
吃饱再睡完成签到 ,获得积分10
21秒前
zhangyujin完成签到,获得积分10
21秒前
狂野的海完成签到 ,获得积分10
22秒前
TEMPO完成签到 ,获得积分10
22秒前
拉长的芷烟完成签到 ,获得积分10
23秒前
24秒前
一氧化二氢完成签到,获得积分10
25秒前
你好啊完成签到,获得积分10
25秒前
甜蜜滑板完成签到,获得积分10
27秒前
11完成签到 ,获得积分10
27秒前
青青草完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4613473
求助须知:如何正确求助?哪些是违规求助? 4018149
关于积分的说明 12437211
捐赠科研通 3700700
什么是DOI,文献DOI怎么找? 2040870
邀请新用户注册赠送积分活动 1073600
科研通“疑难数据库(出版商)”最低求助积分说明 957258