已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MaskArmor: Confidence Masking-based Defense Mechanism for GNN against MIA

遮罩(插图) 机制(生物学) 计算机科学 计算机安全 物理 艺术 量子力学 视觉艺术
作者
Chenyang Chen,Xiaoyu Zhang,Hongbo Qiu,Jian Lou,Zhengyang Liu,Xiaofeng Chen
出处
期刊:Information Sciences [Elsevier]
卷期号:669: 120579-120579
标识
DOI:10.1016/j.ins.2024.120579
摘要

Graph neural networks (GNNs) have demonstrated remarkable performance in diverse graph-related tasks, including node classification, graph classification, link prediction, etc. Previous research has indicated that GNNs are vulnerable to membership inference attacks (MIA). These attacks enable malevolent parties to deduce whether the data points are part of the training set by identifying the output distribution, giving rise to noteworthy privacy apprehensions, especially when the graph contains sensitive data. There have been some studies to defend against graph MIA so far, but they have issues like high computational cost and decreased model accuracy. In this paper, we introduce a novel defense framework called MaskArmor, designed to bolster the privacy and security of GNNs against MIA. The MaskArmor framework encompasses four distinct masking strategies: AdjMask, DTMask, ATMask, and SigMask. These strategies leverage message-passing mechanisms, distillation temperature, hybrid masking, and the Sigmoid function, respectively. The MaskArmor framework effectively obscures the distribution of the model on both the training and non-training samples, rendering it challenging for attackers to ascertain whether particular samples have undergone training. Additionally, MaskArmor sustains the model's precision with negligible computational overhead. Our experiments are implemented across seven benchmark datasets and four GNN networks against shadow-based and threshold-based MIAs, showcasing that MaskArmor substantially heightens GNNs' resilience against MIA while simultaneously preserving accuracy on the initial tasks. It also demonstrates adeptness in countering threshold-based MIA through strategies like AdjMask and ATMask. Exhaustive experimental results substantiate that MaskArmor outperforms alternative existing approaches, maintaining effectiveness and applicability across diverse datasets and attack scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郑麻发布了新的文献求助10
刚刚
神可馨完成签到 ,获得积分10
刚刚
1秒前
popo发布了新的文献求助10
1秒前
天天快乐应助连理枝采纳,获得10
1秒前
111发布了新的文献求助10
2秒前
3秒前
想想完成签到,获得积分20
5秒前
西西完成签到,获得积分10
7秒前
焱焱不忘完成签到 ,获得积分10
7秒前
suuuu完成签到 ,获得积分10
10秒前
10秒前
11秒前
HHHH完成签到,获得积分10
11秒前
12秒前
13秒前
wang发布了新的文献求助10
13秒前
13秒前
清零完成签到,获得积分10
13秒前
畅畅完成签到 ,获得积分10
15秒前
HHHH发布了新的文献求助10
16秒前
大力洙发布了新的文献求助10
16秒前
17秒前
哈哈哈完成签到 ,获得积分10
17秒前
阿松大发布了新的文献求助10
17秒前
wang完成签到,获得积分10
18秒前
连理枝发布了新的文献求助10
20秒前
Eden发布了新的文献求助10
22秒前
22秒前
炙热的豆芽完成签到,获得积分10
23秒前
下文献发布了新的文献求助10
25秒前
25秒前
25秒前
CodeCraft应助哈哈哈采纳,获得10
26秒前
清爽的访枫完成签到 ,获得积分10
27秒前
28秒前
阿修罗发布了新的文献求助10
30秒前
下文献完成签到,获得积分10
31秒前
chongya发布了新的文献求助10
32秒前
中意发布了新的文献求助10
32秒前
高分求助中
System in Systemic Functional Linguistics A System-based Theory of Language 1000
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Essentials of thematic analysis 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3117328
求助须知:如何正确求助?哪些是违规求助? 2767297
关于积分的说明 7690348
捐赠科研通 2422557
什么是DOI,文献DOI怎么找? 1286354
科研通“疑难数据库(出版商)”最低求助积分说明 620301
版权声明 599856