MaskArmor: Confidence Masking-based Defense Mechanism for GNN against MIA

遮罩(插图) 机制(生物学) 计算机科学 计算机安全 物理 艺术 量子力学 视觉艺术
作者
Chenyang Chen,Xiaoyu Zhang,Hongbo Qiu,Jian Lou,Zhengyang Liu,Xiaofeng Chen
出处
期刊:Information Sciences [Elsevier BV]
卷期号:669: 120579-120579
标识
DOI:10.1016/j.ins.2024.120579
摘要

Graph neural networks (GNNs) have demonstrated remarkable performance in diverse graph-related tasks, including node classification, graph classification, link prediction, etc. Previous research has indicated that GNNs are vulnerable to membership inference attacks (MIA). These attacks enable malevolent parties to deduce whether the data points are part of the training set by identifying the output distribution, giving rise to noteworthy privacy apprehensions, especially when the graph contains sensitive data. There have been some studies to defend against graph MIA so far, but they have issues like high computational cost and decreased model accuracy. In this paper, we introduce a novel defense framework called MaskArmor, designed to bolster the privacy and security of GNNs against MIA. The MaskArmor framework encompasses four distinct masking strategies: AdjMask, DTMask, ATMask, and SigMask. These strategies leverage message-passing mechanisms, distillation temperature, hybrid masking, and the Sigmoid function, respectively. The MaskArmor framework effectively obscures the distribution of the model on both the training and non-training samples, rendering it challenging for attackers to ascertain whether particular samples have undergone training. Additionally, MaskArmor sustains the model's precision with negligible computational overhead. Our experiments are implemented across seven benchmark datasets and four GNN networks against shadow-based and threshold-based MIAs, showcasing that MaskArmor substantially heightens GNNs' resilience against MIA while simultaneously preserving accuracy on the initial tasks. It also demonstrates adeptness in countering threshold-based MIA through strategies like AdjMask and ATMask. Exhaustive experimental results substantiate that MaskArmor outperforms alternative existing approaches, maintaining effectiveness and applicability across diverse datasets and attack scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助Cryer2401采纳,获得30
1秒前
1秒前
大袁发布了新的文献求助10
1秒前
呆萌沛柔完成签到,获得积分10
1秒前
1秒前
SinaiPen发布了新的文献求助10
2秒前
2秒前
DUANYALI完成签到,获得积分10
4秒前
艾斯发布了新的文献求助10
4秒前
啊啊啊完成签到,获得积分10
5秒前
海东来应助呆萌的无极采纳,获得30
5秒前
5秒前
Veco发布了新的文献求助10
5秒前
Lemon_Code完成签到,获得积分10
6秒前
6秒前
Owen应助新能源牛马2采纳,获得10
7秒前
7秒前
7秒前
7秒前
mrz完成签到,获得积分10
8秒前
时间到了LY完成签到,获得积分10
8秒前
8秒前
Jenny发布了新的文献求助60
8秒前
9秒前
邢文瑞完成签到,获得积分10
9秒前
9秒前
呜呜呜发布了新的文献求助30
10秒前
科研通AI2S应助梁同学采纳,获得10
10秒前
大袁完成签到,获得积分10
10秒前
未来可期发布了新的文献求助10
10秒前
阳光芫完成签到,获得积分10
10秒前
11秒前
dawang发布了新的文献求助10
11秒前
lyy发布了新的文献求助10
11秒前
fanghao发布了新的文献求助10
11秒前
12秒前
燃燃发布了新的文献求助10
12秒前
Max完成签到,获得积分10
13秒前
13秒前
lanmo完成签到,获得积分10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958909
求助须知:如何正确求助?哪些是违规求助? 3505121
关于积分的说明 11122699
捐赠科研通 3236612
什么是DOI,文献DOI怎么找? 1788911
邀请新用户注册赠送积分活动 871431
科研通“疑难数据库(出版商)”最低求助积分说明 802794