MaskArmor: Confidence Masking-based Defense Mechanism for GNN against MIA

遮罩(插图) 机制(生物学) 计算机科学 计算机安全 物理 艺术 量子力学 视觉艺术
作者
Chenyang Chen,Xiaoyu Zhang,Hongbo Qiu,Jian Lou,Zhengyang Liu,Xiaofeng Chen
出处
期刊:Information Sciences [Elsevier]
卷期号:669: 120579-120579
标识
DOI:10.1016/j.ins.2024.120579
摘要

Graph neural networks (GNNs) have demonstrated remarkable performance in diverse graph-related tasks, including node classification, graph classification, link prediction, etc. Previous research has indicated that GNNs are vulnerable to membership inference attacks (MIA). These attacks enable malevolent parties to deduce whether the data points are part of the training set by identifying the output distribution, giving rise to noteworthy privacy apprehensions, especially when the graph contains sensitive data. There have been some studies to defend against graph MIA so far, but they have issues like high computational cost and decreased model accuracy. In this paper, we introduce a novel defense framework called MaskArmor, designed to bolster the privacy and security of GNNs against MIA. The MaskArmor framework encompasses four distinct masking strategies: AdjMask, DTMask, ATMask, and SigMask. These strategies leverage message-passing mechanisms, distillation temperature, hybrid masking, and the Sigmoid function, respectively. The MaskArmor framework effectively obscures the distribution of the model on both the training and non-training samples, rendering it challenging for attackers to ascertain whether particular samples have undergone training. Additionally, MaskArmor sustains the model's precision with negligible computational overhead. Our experiments are implemented across seven benchmark datasets and four GNN networks against shadow-based and threshold-based MIAs, showcasing that MaskArmor substantially heightens GNNs' resilience against MIA while simultaneously preserving accuracy on the initial tasks. It also demonstrates adeptness in countering threshold-based MIA through strategies like AdjMask and ATMask. Exhaustive experimental results substantiate that MaskArmor outperforms alternative existing approaches, maintaining effectiveness and applicability across diverse datasets and attack scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
好不了一丶完成签到,获得积分10
1秒前
忘崽小油条关注了科研通微信公众号
2秒前
水滴完成签到,获得积分10
3秒前
踏实绮露完成签到 ,获得积分10
3秒前
3秒前
小小沙完成签到,获得积分10
4秒前
Zq完成签到 ,获得积分10
4秒前
xxl发布了新的文献求助10
5秒前
陆lu完成签到,获得积分10
5秒前
清脆刺猬完成签到,获得积分10
5秒前
可爱的函函应助复杂惜霜采纳,获得10
5秒前
白文博完成签到,获得积分10
6秒前
7秒前
量子星尘发布了新的文献求助10
9秒前
kitiker发布了新的文献求助10
9秒前
清秀书兰完成签到 ,获得积分10
9秒前
陆lu发布了新的文献求助20
10秒前
标致的文博完成签到 ,获得积分10
10秒前
11秒前
11秒前
12秒前
13秒前
14秒前
加油呀发布了新的文献求助30
15秒前
15秒前
科研通AI6应助王然采纳,获得10
16秒前
sdniuidifod完成签到,获得积分10
17秒前
cui发布了新的文献求助10
17秒前
风格化橙发布了新的文献求助10
17秒前
18秒前
www111完成签到,获得积分20
18秒前
myelin完成签到,获得积分10
18秒前
chengyida完成签到,获得积分10
19秒前
标致凝莲完成签到 ,获得积分10
20秒前
腼腆的南晴完成签到 ,获得积分10
20秒前
www111发布了新的文献求助10
20秒前
20秒前
田様应助LXJY采纳,获得10
21秒前
端庄的火龙果完成签到 ,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641780
求助须知:如何正确求助?哪些是违规求助? 4757199
关于积分的说明 15014597
捐赠科研通 4800184
什么是DOI,文献DOI怎么找? 2565890
邀请新用户注册赠送积分活动 1524058
关于科研通互助平台的介绍 1483707