MaskArmor: Confidence Masking-based Defense Mechanism for GNN against MIA

遮罩(插图) 机制(生物学) 计算机科学 计算机安全 物理 艺术 量子力学 视觉艺术
作者
Chenyang Chen,Xiaoyu Zhang,Hongbo Qiu,Jian Lou,Zhengyang Liu,Xiaofeng Chen
出处
期刊:Information Sciences [Elsevier]
卷期号:669: 120579-120579
标识
DOI:10.1016/j.ins.2024.120579
摘要

Graph neural networks (GNNs) have demonstrated remarkable performance in diverse graph-related tasks, including node classification, graph classification, link prediction, etc. Previous research has indicated that GNNs are vulnerable to membership inference attacks (MIA). These attacks enable malevolent parties to deduce whether the data points are part of the training set by identifying the output distribution, giving rise to noteworthy privacy apprehensions, especially when the graph contains sensitive data. There have been some studies to defend against graph MIA so far, but they have issues like high computational cost and decreased model accuracy. In this paper, we introduce a novel defense framework called MaskArmor, designed to bolster the privacy and security of GNNs against MIA. The MaskArmor framework encompasses four distinct masking strategies: AdjMask, DTMask, ATMask, and SigMask. These strategies leverage message-passing mechanisms, distillation temperature, hybrid masking, and the Sigmoid function, respectively. The MaskArmor framework effectively obscures the distribution of the model on both the training and non-training samples, rendering it challenging for attackers to ascertain whether particular samples have undergone training. Additionally, MaskArmor sustains the model's precision with negligible computational overhead. Our experiments are implemented across seven benchmark datasets and four GNN networks against shadow-based and threshold-based MIAs, showcasing that MaskArmor substantially heightens GNNs' resilience against MIA while simultaneously preserving accuracy on the initial tasks. It also demonstrates adeptness in countering threshold-based MIA through strategies like AdjMask and ATMask. Exhaustive experimental results substantiate that MaskArmor outperforms alternative existing approaches, maintaining effectiveness and applicability across diverse datasets and attack scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高大的羽毛应助ark861023采纳,获得10
刚刚
情怀应助牧听莲采纳,获得10
刚刚
刚刚
星辰大海应助主手的麻衣采纳,获得10
刚刚
小宇完成签到 ,获得积分10
刚刚
1秒前
1秒前
芝士发布了新的文献求助10
2秒前
咋还完成签到,获得积分10
2秒前
大宝君应助维多利亚采纳,获得30
2秒前
jx完成签到 ,获得积分20
2秒前
2秒前
Rollei应助mmol采纳,获得10
2秒前
夏飞飞发布了新的文献求助10
2秒前
manny发布了新的文献求助150
2秒前
落后立果完成签到,获得积分10
2秒前
阿宁完成签到,获得积分10
2秒前
小谭完成签到,获得积分10
3秒前
leo发布了新的文献求助20
3秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
4秒前
FashionBoy应助开心超人采纳,获得10
4秒前
5秒前
咋还发布了新的文献求助10
5秒前
5秒前
嘻嘻完成签到,获得积分10
5秒前
orixero应助hanna采纳,获得10
5秒前
Lucas应助一个小胖子采纳,获得10
5秒前
5秒前
zzz发布了新的文献求助10
5秒前
赘婿应助迅速冷霜采纳,获得10
5秒前
陈有游完成签到,获得积分10
6秒前
6秒前
Orange应助YANG采纳,获得20
6秒前
6秒前
ZT完成签到,获得积分10
6秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719543
求助须知:如何正确求助?哪些是违规求助? 5256663
关于积分的说明 15288927
捐赠科研通 4869380
什么是DOI,文献DOI怎么找? 2614754
邀请新用户注册赠送积分活动 1564750
关于科研通互助平台的介绍 1521972