A multifunctional nanoplatform with “disruption and killing” function to improve the efficiency of conventional antibiotics for biofilm eradication

生物膜 抗生素 胞外聚合物 铜绿假单胞菌 抗生素耐药性 微生物学 生物 化学 细菌 遗传学
作者
Dongxu Jia,Yi Zou,Jingjing Cheng,Yuheng Zhang,Haixin Zhang,Kunyan Lu,Hong Chen,Yanxia Zhang,Qian Yu
出处
期刊:Journal of Materials Science & Technology [Elsevier BV]
卷期号:205: 98-108 被引量:11
标识
DOI:10.1016/j.jmst.2024.03.060
摘要

Due to the absence of timely and effective therapies, infections induced by bacterial biofilms have been widely acknowledged as a significant global public health concern. In modern times, aside from surgical intervention (when appropriate), antibiotics are the sole clinical option for treating biofilm-associated infections. However, the rise of drug resistance, as well as the poor therapeutic effects of current treatment regimens in eliminating biofilms highlight the requirement for novel strategies to enhance the accessibility of antibiotics in the "post-antibiotic era". The current study presents a multifunctional nanoplatform equipped with a "disruption and killing" function to enhance the effectiveness of conventional antibiotics for the eradication of biofilms. Herein, mesoporous silica nanoparticles were employed as carriers to encapsulate the model antibiotic rifampicin (Rif). Subsequently, the nanoparticles were coated with layers of the tannic acid/iron ion (TA/Fe) complex and immobilized with α-amylase. The α-amylase present in the outer layer can degrade the polysaccharides of extracellular polymeric substances (EPS), which in turn disrupts the structural integrity of the biofilms, thus facilitating the entry of the nanoplatform. When exposed to near-infrared (NIR) light, the TA/Fe complex layers can generate heat, which facilitates the release of Rif and increases the bacterial uptake of Rif by damaging the bacterial cell membrane, ultimately resulting in the elimination of bacteria within biofilms. The in vitro experiments demonstrated that this nanoplatform effectively eliminated over 99% of biofilms formed by Staphylococcus aureus and Pseudomonas aeruginosa when exposed to NIR radiation for 10 min. Additionally, in vivo experimental findings further validated the extensive therapeutic efficacy of this nanoplatform against biofilm-infected wounds, accelerating the rate of healing and reducing inflammatory reactions. To summarize, this nanoplatform provides a novel avenue to improve the effectiveness of conventional antibiotics in eradicating bacterial biofilms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
日出发布了新的文献求助10
1秒前
1秒前
JamesPei应助tRNA采纳,获得10
4秒前
Jacky完成签到,获得积分10
4秒前
李健的小迷弟应助日出采纳,获得10
4秒前
HEIKU应助蜀黍采纳,获得30
6秒前
xxddw发布了新的文献求助10
7秒前
9秒前
21完成签到,获得积分10
10秒前
木禾火发布了新的文献求助10
12秒前
13秒前
haralee完成签到 ,获得积分10
14秒前
16秒前
16秒前
精明芷巧完成签到 ,获得积分10
17秒前
王小聪明发布了新的文献求助10
18秒前
木禾火完成签到,获得积分20
18秒前
顺其自然_666888完成签到,获得积分10
18秒前
非对称转录完成签到,获得积分10
18秒前
yingzaifeixiang完成签到 ,获得积分10
19秒前
19秒前
科研通AI2S应助雅哲采纳,获得10
20秒前
tRNA发布了新的文献求助10
20秒前
FashionBoy应助清秀人杰采纳,获得10
22秒前
22秒前
22秒前
淡然的衣发布了新的文献求助10
23秒前
24秒前
24秒前
Jasper应助蜀黍采纳,获得30
24秒前
25秒前
AI imaging发布了新的文献求助10
27秒前
日出发布了新的文献求助10
29秒前
xxddw完成签到,获得积分10
29秒前
cmq完成签到 ,获得积分10
30秒前
独特成威完成签到 ,获得积分10
30秒前
34秒前
厄尔尼诺发布了新的文献求助10
34秒前
我是老大应助日出采纳,获得10
35秒前
lan发布了新的文献求助10
38秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740101
求助须知:如何正确求助?哪些是违规求助? 3283046
关于积分的说明 10033642
捐赠科研通 2999934
什么是DOI,文献DOI怎么找? 1646216
邀请新用户注册赠送积分活动 783427
科研通“疑难数据库(出版商)”最低求助积分说明 750374