Combining Field Observations and Remote Sensing to Forecast Fine Fuel Loads

环境科学 生产力 气象学 计算机科学 地理 宏观经济学 经济
作者
Mira Ensley‐Field,Robert K. Shriver,S. Edward Law,Peter B. Adler
出处
期刊:Rangeland Ecology & Management [Elsevier]
卷期号:90: 245-255 被引量:5
标识
DOI:10.1016/j.rama.2023.04.008
摘要

Effective wildfire management requires accurate information about the spatial distribution of fuels. While static maps work well for coarse forest fuels with slow turnover, fine fuels—the driver of rangeland fires—often vary dramatically from year to year. Our goal was to develop a fine fuel forecast to help managers optimally allocate fire suppression resources and funding before the start of the fire season and to identify critical gaps in understanding or data that limit forecast skill. We compiled a historical record of fine fuel loads collected in the Great Basin and combined it with remotely sensed data on herbaceous productivity. Using a Bayesian State-Space approach to account for both process and observation error, we built a “Fuels Model” in which the predicted fuel load at a location depends on the fuel load in the previous year and productivity of the current year. Next, we built a “productivity model” to predict current year production based on remotely sensed data available in early spring. Finally, we combined these two models to generate early spring forecasts for summer fuel loads from 1987 to 2020 and quantified the associated uncertainty. We found that current year productivity contributed twice as much as the previous year's fuel load to the current fuel load. Our productivity predictions reduced mean absolute predictive error by 11% compared with a strong null model without early-season weather covariates. However, when we fed the productivity predictions into our fuel model, the resulting fuel load forecasts had too much uncertainty to inform management decisions, with most uncertainty coming from the process error of the Fuels Model. Reducing this uncertainty will require higher-quality observations of fuel loads. Until those are available, our results suggest that managers could rely on productivity forecasts as a reasonable proxy for fuel load forecasts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不能当饭吃完成签到,获得积分10
1秒前
月亮很亮完成签到,获得积分10
1秒前
华仔应助jade257采纳,获得10
1秒前
123完成签到,获得积分10
2秒前
LLL完成签到,获得积分10
2秒前
wf发布了新的文献求助10
3秒前
可靠海白完成签到,获得积分10
3秒前
天气晴朗完成签到,获得积分10
3秒前
xiaolin发布了新的文献求助10
4秒前
嘤嘤怪应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
嘤嘤怪应助科研通管家采纳,获得20
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得20
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得10
5秒前
5秒前
6秒前
烟雨夕阳完成签到,获得积分10
6秒前
Waaly完成签到,获得积分10
6秒前
6秒前
6秒前
比亚迪士尼在逃公主完成签到,获得积分10
7秒前
十个勤天完成签到,获得积分10
8秒前
月光完成签到,获得积分10
8秒前
www完成签到 ,获得积分10
9秒前
烟花应助andy采纳,获得10
10秒前
Iso完成签到,获得积分10
10秒前
依克完成签到,获得积分10
10秒前
一一完成签到,获得积分10
11秒前
圣人海完成签到,获得积分10
11秒前
ccCherub完成签到 ,获得积分10
11秒前
我爱科研完成签到 ,获得积分10
11秒前
张军辉发布了新的文献求助10
12秒前
科研通AI2S应助wf采纳,获得10
12秒前
13秒前
14秒前
脑洞疼应助冰雪物语采纳,获得10
14秒前
16秒前
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455774
求助须知:如何正确求助?哪些是违规求助? 3051058
关于积分的说明 9023842
捐赠科研通 2739691
什么是DOI,文献DOI怎么找? 1502922
科研通“疑难数据库(出版商)”最低求助积分说明 694646
邀请新用户注册赠送积分活动 693451