Solving the Price-Setting Newsvendor Problem with Parametric Operational Data Analytics (ODA)

报童模式 分析 参数统计 计算机科学 数据分析 计量经济学 经济 运筹学 数学优化 业务 数学 数据科学 统计 营销 供应链 数据挖掘
作者
Leon Yang Chu,Qi Feng,J. George Shanthikumar,Zuo‐Jun Max Shen,Jian Wu
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:1
标识
DOI:10.1287/mnsc.2021.02227
摘要

We study the data-integrated, price-setting newsvendor problem in which the price–demand relationship is described by some parametric model with unknown parameters. We develop the operational data analytics (ODA) formulation of this problem that features a data-integration model and a validation model. The data-integration model consists of a class of functions called the operational statistics. Each operational statistic maps the available data to the ordering decision. The validation model finds, among the set of candidate operational statistics, the ordering decision that leads to the highest actual profit, which is unknown because of the unknown demand parameters. This ODA framework leads to a consistent estimate of the profit function with which we optimize the pricing decision. The derived quantity and price decisions demonstrate robust profit performance even when the sample size is very small in relation to the demand variability. Compared with the conventional approach with which the unknown parameters are estimated and then the decisions are optimized, the ODA framework produces significantly superior performance in the mean, standard deviation, and minimum of the profit, suggesting the robustness of the ODA solution especially in the small-sample regime. This paper was accepted by David Simchi-Levi, operations management. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2021.02227 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助eason采纳,获得10
刚刚
不染完成签到 ,获得积分10
1秒前
Mm完成签到,获得积分10
1秒前
山猫大王完成签到 ,获得积分10
1秒前
迟大猫应助悦悦采纳,获得10
1秒前
书俭完成签到,获得积分10
1秒前
狼洪明发布了新的文献求助10
2秒前
科研顺利完成签到 ,获得积分10
2秒前
犹豫的初丹完成签到,获得积分10
3秒前
斯文败类应助Yyyyyttttt采纳,获得20
4秒前
Stephen123完成签到,获得积分10
5秒前
5秒前
leungya完成签到,获得积分10
7秒前
猫了个喵完成签到,获得积分10
7秒前
科研鸟发布了新的文献求助10
9秒前
10秒前
清爽冬莲完成签到 ,获得积分10
11秒前
Wjh123456完成签到,获得积分10
11秒前
12秒前
科研通AI5应助哈哈采纳,获得10
12秒前
liu完成签到,获得积分10
12秒前
斯文雪青完成签到,获得积分10
13秒前
坐看云起时完成签到,获得积分20
13秒前
光亮向露完成签到,获得积分10
13秒前
甜美幻露发布了新的文献求助10
16秒前
16秒前
殷超完成签到,获得积分0
17秒前
无辜念文完成签到,获得积分10
18秒前
小雨完成签到,获得积分10
19秒前
大模型应助警羽之翼采纳,获得10
19秒前
20秒前
团宝妞宝完成签到,获得积分10
20秒前
酷波er应助zino采纳,获得10
21秒前
Leofar完成签到 ,获得积分10
22秒前
青云完成签到,获得积分10
22秒前
ljl发布了新的文献求助10
23秒前
虚幻初之完成签到,获得积分10
23秒前
ycd完成签到,获得积分10
23秒前
张小南完成签到,获得积分10
23秒前
小富婆完成签到 ,获得积分10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Introduction to Micromechanics and Nanomechanics 2nd Edition 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3535431
求助须知:如何正确求助?哪些是违规求助? 3113832
关于积分的说明 9313776
捐赠科研通 2811825
什么是DOI,文献DOI怎么找? 1544461
邀请新用户注册赠送积分活动 719442
科研通“疑难数据库(出版商)”最低求助积分说明 711431