Computational and neural evidence for altered fast and slow learning from losses in problem gambling

心理学 前额叶皮质 壳核 发展心理学 认知心理学 神经科学 认知
作者
Kiyohito Iigaya,Tobias Larsen,Timothy Fong,John P. O’Doherty
出处
期刊:The Journal of Neuroscience [Society for Neuroscience]
卷期号:: e0080242024-e0080242024
标识
DOI:10.1523/jneurosci.0080-24.2024
摘要

Learning occurs across multiple timescales, with fast learning crucial for adapting to sudden environmental changes, and slow learning beneficial for extracting robust knowledge from multiple events. Here we asked if miscalibrated fast vs slow learn­ing can lead to maladaptive decision-making in individuals with problem gambling. We recruited participants with problem gambling (PG; N=20; 9 female and 11 male) and a recreational gambling control group without any symptoms associated with problem gambling (N=20; 10 female and 10 male) from the community in Los Ange­les, CA. Participants performed a decision-making task involving reward-learning and loss-avoidance while being scanned with fMRI. Using computational model fitting, we found that individuals in the PG group showed evidence for an excessive dependence on slow timescales and a reduced reliance on fast timescales during learning. fMRI data implicated the putamen, an area associated with habit, and medial prefrontal cortex (PFC) in slow loss-value encoding, with significantly more robust encoding in medial PFC in the PG group compared to controls. The PG group also exhibited stronger loss prediction error encoding in the insular cortex. These findings suggest that individuals with PG have an impaired ability to adjust their predictions following losses, manifested by a stronger influence of slow value learning. This impairment could contribute to the behavioral inflexibility of problem gamblers, particularly the persistence in gambling behavior typically observed in those individuals after incur­ring loss outcomes. Significance Statement Over five million American adults are considered to experience problem gambling, leading to financial and social devastation. Yet the neural basis of problem gambling remains elusive, impeding the development of effective treatments. We apply computational modeling and neuroimaging to understand the mechanisms underlying problem gambling. In a decision-making task involving reward-learning and loss-avoidance, individuals with problem gambling show an impaired behavioral adjustment following losses. Computational model-driven analyses suggest that, while all participants relied on learning over both fast and slow timescales, individuals with problem gambling showed increased reliance on slow-learning from losses. Neuroimaging identified the putamen, medial prefrontal cortex, and insula as key brain regions in this learning disparity. This research offers new insights into the altered neural computations underlying problem gambling.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
乙酰胆碱发布了新的文献求助10
刚刚
刚刚
万能图书馆应助笙黎采纳,获得10
刚刚
DR_ZHANG发布了新的文献求助10
刚刚
刚刚
czz014发布了新的文献求助10
1秒前
FashionBoy应助mm采纳,获得10
1秒前
发货后完成签到,获得积分10
2秒前
2秒前
李健的小迷弟应助zhu采纳,获得10
3秒前
anki发布了新的文献求助10
3秒前
麻瓜完成签到,获得积分10
3秒前
3秒前
哈哈发布了新的文献求助10
3秒前
幸福的冰珍完成签到,获得积分10
4秒前
果果完成签到,获得积分10
5秒前
爱笑冰海完成签到,获得积分10
5秒前
螃螃发布了新的文献求助10
5秒前
宸昶完成签到,获得积分10
6秒前
6秒前
不想看文献关注了科研通微信公众号
7秒前
8秒前
小蘑菇应助zzx采纳,获得10
8秒前
思源应助乙酰胆碱采纳,获得10
8秒前
Christina完成签到,获得积分10
8秒前
9秒前
9秒前
123发布了新的文献求助10
9秒前
10秒前
杨老师发布了新的文献求助10
10秒前
10秒前
董是鑫发布了新的文献求助10
10秒前
华志文完成签到,获得积分10
10秒前
英姑应助喜悦的铭采纳,获得10
10秒前
11秒前
zz发布了新的文献求助10
12秒前
科研通AI6应助1+1采纳,获得10
13秒前
科研通AI6应助张耘硕采纳,获得10
13秒前
annaanna发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5260333
求助须知:如何正确求助?哪些是违规求助? 4421812
关于积分的说明 13764321
捐赠科研通 4295995
什么是DOI,文献DOI怎么找? 2357141
邀请新用户注册赠送积分活动 1353475
关于科研通互助平台的介绍 1314745