Engineering Biomimetic Microvascular Capillary Networks in Hydrogel Fibrous Scaffolds via Microfluidics-Assisted Co-Axial Wet-Spinning

生物加工 材料科学 生物医学工程 微流控 超细纤维 组织工程 毛细管作用 自愈水凝胶 脐静脉 纤维 间充质干细胞 纳米技术 复合材料 化学 体外 细胞生物学 生物 医学 高分子化学 生物化学
作者
Alessia Paradiso,Marina Volpi,Diana C. Martinez,Jakub Jaroszewicz,Marco Costantini,Wojciech Święszkowski
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
标识
DOI:10.1021/acsami.4c15221
摘要

The microvascular bed plays a crucial role in establishing nutrient exchange and waste removal, as well as maintaining tissue metabolic activity in the human body. However, achieving microvascularization of engineered 3D tissue constructs is still an unsolved challenge. In this work, we developed biomimetic cell-laden hydrogel microfibers recapitulating oriented microvascular capillary-like networks by using a 3D bioprinting technique combined with microfluidics-assisted coaxial wet-spinning. Highly packed and aligned bundles embedding a coculture of human bone marrow-derived mesenchymal stem cells (MSCs) and human umbilical vein endothelial cells (HUVECs) were produced by simultaneously extruding two different bioinks. To this aim, core–shell fibers were wet-spun in a coagulation bath to collect the scaffolds later on a rotary drum. Initially, the versatility of the proposed system was assessed for the extrusion of multimaterial core–shell hydrogel fibers. Subsequently, the platform was validated for the in vitro biofabrication of samples promoting optimal cell alignment along the fiber axis. After 3 weeks of culture, such fiber configuration resulted in the development of an oriented capillary-like network within the fibrin-based core and in the endothelial-specific CD31 marker expression upon MSC/HUVEC maturation. Synergistically, the vertical arrangement of the coaxial nozzle coupled with the rotation of the fiber collector facilitated the rapid creation of tightly packed bundles characterized by a dense, oriented, and extensively branched capillary network. Notably, such findings suggest that the proposed biofabrication strategy can be used for the microvascularization of tissue-specific 3D constructs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
揽月yue完成签到,获得积分10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
满意白卉完成签到 ,获得积分10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
shouyu29应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
1秒前
今后应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
WK-kin完成签到,获得积分10
2秒前
wang完成签到 ,获得积分10
2秒前
czj完成签到,获得积分10
2秒前
一米八八完成签到 ,获得积分10
2秒前
芍药完成签到,获得积分10
4秒前
馥日祎完成签到,获得积分10
4秒前
Frac_er完成签到,获得积分10
4秒前
Tonald Yang发布了新的文献求助10
5秒前
不吃了完成签到 ,获得积分10
5秒前
朴实依琴完成签到,获得积分10
5秒前
5秒前
彭宣健完成签到,获得积分20
5秒前
jjjjjjjj完成签到,获得积分0
6秒前
务实鞅完成签到 ,获得积分10
6秒前
洁净的静芙完成签到,获得积分10
6秒前
共渡完成签到,获得积分10
6秒前
板花发布了新的文献求助10
6秒前
潇洒的白昼完成签到,获得积分10
6秒前
清纯小奶绿完成签到,获得积分10
7秒前
Lucas应助LeonZhang采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
tt完成签到 ,获得积分10
8秒前
shaft完成签到,获得积分10
8秒前
哈哈hehe完成签到,获得积分10
8秒前
sptyzl完成签到 ,获得积分10
8秒前
8秒前
WK-kin给WK-kin的求助进行了留言
9秒前
阿宝完成签到,获得积分0
9秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661303
求助须知:如何正确求助?哪些是违规求助? 3222367
关于积分的说明 9745047
捐赠科研通 2931980
什么是DOI,文献DOI怎么找? 1605350
邀请新用户注册赠送积分活动 757854
科研通“疑难数据库(出版商)”最低求助积分说明 734569