亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

P2TC: A Lightweight Pyramid Pooling Transformer-CNN Network for Accurate 3D Whole Heart Segmentation

联营 计算机科学 人工智能 分割 棱锥(几何) 图像分割 模式识别(心理学) 计算机视觉 变压器 工程类 数学 几何学 电压 电气工程
作者
Hengfei Cui,Yifan Wang,Zheng Fan,Yan Li,Yanning Zhang,Yong Xia
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11
标识
DOI:10.1109/jbhi.2025.3526727
摘要

Cardiovascular disease is a leading global cause of death, requiring accurate heart segmentation for diagnosis and surgical planning. Deep learning methods have been demonstrated to achieve superior performances in cardiac structures segmentation. However, there are still limitations in 3D whole heart segmentation, such as inadequate spatial context modeling, difficulty in capturing long-distance dependencies, high computational complexity, and limited representation of local high-level semantic information. To tackle the above problems, we propose a lightweight Pyramid Pooling Transformer-CNN (P2TC) network for accurate 3D whole heart segmentation. The proposed architecture comprises a dual encoder-decoder structure with a 3D pyramid pooling Transformer for multi-scale information fusion and a lightweight large-kernel Convolutional Neural Network (CNN) for local feature extraction. The decoder has two branches for precise segmentation and contextual residual handling. The first branch is used to generate segmentation masks for pixel-level classification based on the features extracted by the encoder to achieve accurate segmentation of cardiac structures. The second branch highlights contextual residuals across slices, enabling the network to better handle variations and boundaries. Extensive experimental results on the Multi-Modality Whole Heart Segmentation (MM-WHS) 2017 challenge dataset demonstrate that P2TC outperforms the most advanced methods, achieving the Dice scores of 92.6% and 88.1% in Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) modalities respectively, which surpasses the baseline model by 1.5% and 1.7%, and achieves state-of-the-art segmentation results. Our code will be released via https://github.com/Countdown229/P2TC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Hillson完成签到 ,获得积分10
2秒前
无辜绿竹发布了新的文献求助10
5秒前
无辜绿竹完成签到,获得积分20
10秒前
最爱吃火锅完成签到,获得积分10
11秒前
科研通AI5应助dd采纳,获得10
17秒前
17秒前
小林太郎应助科研通管家采纳,获得10
18秒前
小林太郎应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
JHcHuN发布了新的文献求助10
19秒前
思源应助whisper采纳,获得10
24秒前
34秒前
小高发布了新的文献求助30
37秒前
37秒前
38秒前
whisper发布了新的文献求助10
41秒前
44秒前
dd发布了新的文献求助10
44秒前
科研通AI5应助alex采纳,获得10
48秒前
NexusExplorer应助zzz采纳,获得10
50秒前
丘比特应助Yato采纳,获得10
55秒前
危机的慕卉完成签到 ,获得积分10
1分钟前
无聊的如凡完成签到,获得积分20
1分钟前
Yen应助无聊的如凡采纳,获得20
1分钟前
英俊的铭应助ggdh采纳,获得10
1分钟前
wguanmc完成签到,获得积分10
1分钟前
香蕉凌柏发布了新的文献求助10
1分钟前
黑色兔子完成签到 ,获得积分10
1分钟前
ggdh完成签到,获得积分20
1分钟前
1分钟前
Maria完成签到,获得积分10
1分钟前
迷你的靖雁完成签到,获得积分10
1分钟前
ggdh发布了新的文献求助10
1分钟前
深情安青应助呆瓜采纳,获得10
1分钟前
1分钟前
sakiko完成签到 ,获得积分10
1分钟前
吾日三省吾身完成签到 ,获得积分10
1分钟前
饺子生面包完成签到 ,获得积分10
1分钟前
zhangyu哥完成签到,获得积分10
2分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3544354
求助须知:如何正确求助?哪些是违规求助? 3121546
关于积分的说明 9347794
捐赠科研通 2819801
什么是DOI,文献DOI怎么找? 1550452
邀请新用户注册赠送积分活动 722526
科研通“疑难数据库(出版商)”最低求助积分说明 713273