Attention-Enhanced Controllable Disentanglement for Cloth-Changing Person Re-identification

鉴定(生物学) 计算机科学 心理学 生物 植物
作者
Yiyuan Ge,Mingxin Yu,Zhihao Chen,Wenshuai Lu,Yuxiang Dai,Huiyu Shi
出处
期刊:Research Square - Research Square 被引量:1
标识
DOI:10.21203/rs.3.rs-4367589/v1
摘要

Abstract Cloth-changing person re-identification (Re-ID) is an emerging research theme that aims at identifying individuals after clothing change. Many contemporary approaches focus on disentangling clothing features and solely employ clothing-unrelated parts for identification. However, the absence of ground truth poses a significant challenge to the disentanglement process, these methods may introduce unintended noise and degrade the overall performance. To mitigate this issue, we propose a novel framework, termed Attention-based Controllable Disentanglement Network (ACD-Net). In ACD-Net, we design an Attention-enhanced Disentanglement Branch (ADB) where human parsing masks are introduced to guide the separation of clothing features and clothing-unrelated features. Here, clothing-unrelated features are subdivided into unclothed body features and contour features, and we propose two novel attention mechanisms: Dynamic Interaction-Remote Aggregation Attention (DI-RAA) and Dynamic Interaction-Positional Relevance Attention (DI-PRA) to enhance the representations of these two features, respectively. Experimental results on PRCC, LTCC, DeepChange, and CCVID datasets demonstrate the superiority of our approach over the state-of-the-art methods. For the cloth-changing setting, the mAP of our network on PRCC, LTCC, and DeepChangedatasets are 59.5%, 22.6%, and 20.6%, and the Rank-1 are 60.6%, 45.5%, and 56.8%, respectively. In addition, our model also obtains 81.5% of mAP and 83.4% of Rank-1 on the video dataset CCVID. The code is available at: https://github.com/jk-love-ge/ACDNet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1234完成签到,获得积分10
刚刚
123jjj完成签到,获得积分10
1秒前
碳土不凡完成签到 ,获得积分10
1秒前
方百招完成签到,获得积分10
2秒前
小胖卷毛完成签到,获得积分10
2秒前
黎黎完成签到,获得积分10
2秒前
nozero应助科研通管家采纳,获得200
3秒前
八九完成签到 ,获得积分10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
cdercder应助科研通管家采纳,获得20
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
英姑应助科研通管家采纳,获得30
3秒前
子车茗应助科研通管家采纳,获得20
3秒前
樊书雪完成签到,获得积分10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
ldy完成签到,获得积分10
3秒前
王饱饱完成签到 ,获得积分10
4秒前
4秒前
cyw完成签到,获得积分10
4秒前
美满的凝丝完成签到,获得积分10
5秒前
5秒前
CO2完成签到,获得积分10
6秒前
璐宝完成签到,获得积分10
6秒前
一程完成签到 ,获得积分10
7秒前
7秒前
文献通完成签到 ,获得积分10
7秒前
8秒前
隐形傲霜完成签到 ,获得积分10
9秒前
英俊的铭应助nyfz2002采纳,获得10
9秒前
黄金天下完成签到,获得积分10
9秒前
lpx43完成签到,获得积分10
10秒前
zhangyu完成签到,获得积分10
11秒前
马儿饿了要吃草完成签到,获得积分10
11秒前
淡淡de橙子完成签到,获得积分10
11秒前
hjaxii完成签到,获得积分10
11秒前
好运藏在善良里完成签到,获得积分10
12秒前
13秒前
14秒前
snow完成签到,获得积分10
14秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Munson, Young, and Okiishi’s Fundamentals of Fluid Mechanics 9 edition problem solution manual (metric) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3750030
求助须知:如何正确求助?哪些是违规求助? 3293340
关于积分的说明 10080983
捐赠科研通 3008689
什么是DOI,文献DOI怎么找? 1652352
邀请新用户注册赠送积分活动 787381
科研通“疑难数据库(出版商)”最低求助积分说明 752179