Derivation and Validation of an Artificial Intelligence-Based Plaque Burden Safety Cut-Off for Long-Term Acute Coronary Syndrome from Coronary Computed Tomography Angiography

医学 队列 急性冠脉综合征 过度诊断 内科学 动脉粥样硬化 心脏病学 冠状动脉造影 计算机断层摄影术 放射科 核医学 心肌梗塞
作者
Sarah Bär,Juhani Knuuti,Antti Saraste,Riku Klén,Tanja Kero,Takeru Nabeta,Jeroen J. Bax,Ibrahim Danad,Nick S. Nurmohamed,Ruurt Jukema,Paul Knaapen,Teemu Maaniitty
出处
期刊:European Journal of Echocardiography [Oxford University Press]
标识
DOI:10.1093/ehjci/jeaf121
摘要

Abstract Aims Artificial intelligence (AI) has enabled accurate and fast plaque quantification from coronary computed tomography angiography (CCTA). However, AI detects any coronary plaque in up to 97% of patients. To avoid overdiagnosis, a plaque burden safety cut-off for future coronary events is needed. Methods and Results Percent atheroma volume (PAV) was quantified with artificial intelligence-guided quantitative computed tomography (AI-QCT) in a blinded fashion. Safety cut-off derivation was performed in the Turku CCTA registry, Finland, and pre-defined as ≥90% sensitivity for acute coronary syndrome (ACS). External validation was performed in the Amsterdam CCTA registry, Netherlands. In the derivation cohort, 100/2271 (4.4%) patients experienced ACS (median follow-up 6.9 years). A threshold of PAV ≥2.6% was derived with 90.0% sensitivity and negative predictive value (NPV) of 99.0%. In the validation cohort 27/568 (4.8%) experienced ACS (median follow-up 6.7 years) with PAV ≥2.6% showing 92.6% sensitivity and 99.0% NPV for ACS. In the derivation cohort, 45.2% of patients had PAV <2.6% vs. 4.3% with PAV 0% (no plaque) (p<0.001) (validation cohort: 34.3% PAV <2.6% vs. 2.6% PAV 0%; p<0.001). Patients with PAV ≥2.6% had higher adjusted ACS rates in the derivation (HR 4.65, 95% CI 2.33-9.28, p<0.001) and validation cohort (HR 7.31, 95% CI 1.62-33.08, p=0.010), respectively. Conclusion This study suggests that PAV up to 2.6% quantified by AI is associated with low ACS risk in two independent patient cohorts. This cut-off may be helpful for clinical application of AI-guided CCTA analysis, which detects any plaque in up to 96-97% of patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
jjj发布了新的文献求助10
2秒前
3秒前
3秒前
杜凯发布了新的文献求助10
4秒前
5秒前
能干的大门完成签到,获得积分10
6秒前
刘小跳完成签到 ,获得积分10
7秒前
7秒前
wnx完成签到,获得积分10
7秒前
7秒前
彭于晏应助FUNG采纳,获得10
7秒前
光亮的笑白完成签到,获得积分10
9秒前
Sophia发布了新的文献求助10
9秒前
科研通AI5应助李傲采纳,获得10
10秒前
英俊的胜发布了新的文献求助10
12秒前
phy完成签到,获得积分10
12秒前
15秒前
Sophia完成签到,获得积分10
18秒前
ixueyi发布了新的文献求助10
20秒前
小哇完成签到,获得积分10
20秒前
FUNG发布了新的文献求助10
21秒前
伶俐的不尤完成签到,获得积分10
23秒前
23秒前
科研通AI2S应助英俊的胜采纳,获得10
27秒前
今天只做一件事应助wyc采纳,获得10
28秒前
30秒前
科研通AI5应助Yzz采纳,获得10
30秒前
30秒前
哈哈哈完成签到,获得积分10
34秒前
34秒前
34秒前
科研通AI5应助jxas采纳,获得10
35秒前
Lucas应助苏卿采纳,获得30
35秒前
哈哈哈发布了新的文献求助10
36秒前
shuxue完成签到,获得积分10
37秒前
遇见馅儿饼完成签到 ,获得积分10
38秒前
落寞的妖妖完成签到,获得积分10
39秒前
梁婷发布了新的文献求助10
39秒前
传奇3应助伊可采纳,获得10
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775383
求助须知:如何正确求助?哪些是违规求助? 3321040
关于积分的说明 10203256
捐赠科研通 3035928
什么是DOI,文献DOI怎么找? 1665883
邀请新用户注册赠送积分活动 797128
科研通“疑难数据库(出版商)”最低求助积分说明 757744