已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Improving ballistocardiogram-based continuous heart rate variability monitoring: A self-supervised learning approach

心跳 计算机科学 人工智能 模式识别(心理学) 自编码 心脏超声心动图 波形 规范化(社会学) 机器学习 语音识别 深度学习 雷达 电信 物理 计算机安全 量子力学 社会学 人类学
作者
Chuanmin Wu,Jiafeng Qiu,Gang Shen
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:89: 105774-105774 被引量:1
标识
DOI:10.1016/j.bspc.2023.105774
摘要

Heart rate variability (HRV) is a reliable measure of an individual’s physical and mental fitness. Monitoring HRV over time provides crucial indicators of various health issues and helps in the early implementation of preventive measures. While the ballistocardiogram (BCG) serves as an alternative to the electrocardiogram (ECG) for convenient at-home HRV monitoring, it is inevitable to face the presence of undesirable artifacts and irregular waveforms in BCG signals that can hinder accurate monitoring when appropriate interventions are unavailable. To address this challenge, we propose a self-supervised learning approach consisting of three stages: signal separation, heartbeat pattern detection, and peak identification. We introduce convolutional kernels of different sizes to construct adaptive soft filters that effectively extract the heartbeat waveform from the original signal. To discover the heartbeat patterns, we utilize the k-means algorithm for clustering the encoded peaks obtained from the masked autoencoder and then compute Kullback–Leibler divergences to determine the optimal number of clusters. Subsequently, a lightweight multi-feature cross-attention classifier is employed to locate the heartbeats. Although the classifier is trained using pseudo-labels generated in the previous stage, the inherent similarity of heartbeats can enhance its performance. Our approach accommodates diverse BCG signal modes and does not require an annotated dataset for model training. Through evaluations conducted on 24 healthy subjects using synchronized ECG references, our prototype system demonstrated an accuracy of approximately 99% in heartbeat identification and an interbeat interval RMSE of under 15ms. These results suggest the system’s practicality and suitability for real-world HRV monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wzyyyyy完成签到,获得积分20
3秒前
不倦应助AA采纳,获得10
8秒前
不配.给Biom的求助进行了留言
8秒前
马小马完成签到 ,获得积分10
8秒前
自觉的白凝完成签到,获得积分10
10秒前
犹豫的灵萱完成签到,获得积分10
10秒前
xyzs完成签到,获得积分20
10秒前
12秒前
13秒前
情怀应助程许采纳,获得30
15秒前
艺艺发布了新的文献求助10
18秒前
Dskelf完成签到,获得积分10
19秒前
凡平发布了新的文献求助10
20秒前
青黛完成签到 ,获得积分10
21秒前
22秒前
22秒前
程许发布了新的文献求助30
27秒前
29秒前
sanlunainiu应助55555采纳,获得30
29秒前
30秒前
资格丘二完成签到 ,获得积分10
34秒前
天润佳苑发布了新的文献求助10
36秒前
JamesPei应助Dou采纳,获得10
37秒前
38秒前
科研通AI2S应助MARVERICK采纳,获得10
40秒前
酷波er应助天润佳苑采纳,获得10
44秒前
我的苞娜公主完成签到,获得积分10
46秒前
新晋学术小生完成签到 ,获得积分10
50秒前
秋殇浅寞完成签到,获得积分10
51秒前
53秒前
文章多多完成签到 ,获得积分10
54秒前
56秒前
韩韩完成签到 ,获得积分10
58秒前
58秒前
飞羽发布了新的文献求助10
59秒前
凡平完成签到,获得积分20
59秒前
1分钟前
MARVERICK发布了新的文献求助10
1分钟前
fzzzzlucy完成签到,获得积分10
1分钟前
Wy21完成签到 ,获得积分10
1分钟前
高分求助中
Востребованный временем 2500
诺贝尔奖与生命科学 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
effects of intravenous lidocaine on postoperative pain and gastrointestinal function recovery following gastrointestinal surgery: a meta-analysis 400
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3379019
求助须知:如何正确求助?哪些是违规求助? 2994451
关于积分的说明 8759401
捐赠科研通 2679027
什么是DOI,文献DOI怎么找? 1467442
科研通“疑难数据库(出版商)”最低求助积分说明 678688
邀请新用户注册赠送积分活动 670340