Quantile Regression Methods

分位数回归 分位数 计量经济学 二项回归 统计 回归分析 数学 线性回归
作者
Bernd Fitzenberger,Ralf A. Wilke
标识
DOI:10.1002/9781118900772.etrds0269
摘要

Abstract Quantile regression is emerging as a popular statistical approach, which complements the estimation of conditional mean models. While the latter only focuses on one aspect of the conditional distribution of the dependent variable, the mean, quantile regression provides more detailed insights by modeling conditional quantiles. Quantile regression can therefore detect whether the partial effect of a regressor on the conditional quantiles is the same for all quantiles or differs across quantiles. Quantile regression can provide evidence for a statistical relationship between two variables even if the mean regression model does not. We provide a short informal introduction into the principle of quantile regression which includes an illustrative application from empirical labor market research. This is followed by briefly sketching the underlying statistical model for linear quantile regression based on a cross‐section sample. We summarize various important extensions of the model including the nonlinear quantile regression model, censored quantile regression, and quantile regression for time‐series data. We also discuss a number of more recent extensions of the quantile regression model to censored data, duration data, and endogeneity, and we describe how quantile regression can be used for decomposition analysis. Finally, we identify several key issues, which should be addressed by future research, and we provide an overview of quantile regression implementations in major statistics software. Our treatment of the topic is based on the perspective of applied researchers using quantile regression in their empirical work.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朴实剑通完成签到,获得积分10
刚刚
刚刚
刚刚
摸鱼王完成签到,获得积分10
刚刚
Gauss应助zhihaiyu采纳,获得50
1秒前
1秒前
Ava应助陈十一yyyyy采纳,获得10
1秒前
栗子完成签到,获得积分10
1秒前
简化为完成签到,获得积分10
1秒前
KevinDante完成签到 ,获得积分10
2秒前
li完成签到,获得积分10
2秒前
娜娜完成签到,获得积分20
3秒前
豆本豆发布了新的文献求助10
3秒前
自知则知之完成签到,获得积分10
3秒前
3秒前
3秒前
杨永信发布了新的文献求助10
3秒前
echo发布了新的文献求助10
4秒前
宋宋发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
FashionBoy应助hxy采纳,获得10
5秒前
1090发布了新的文献求助10
5秒前
5秒前
小猪发布了新的文献求助10
6秒前
宁幼萱发布了新的文献求助10
6秒前
合适板栗完成签到,获得积分10
6秒前
7秒前
星辰完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
liuxiaomeng发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
Aress璇玑发布了新的文献求助10
8秒前
义气凡霜完成签到,获得积分10
8秒前
8秒前
张明完成签到,获得积分10
9秒前
kwl发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525810
求助须知:如何正确求助?哪些是违规求助? 4615949
关于积分的说明 14550994
捐赠科研通 4554057
什么是DOI,文献DOI怎么找? 2495680
邀请新用户注册赠送积分活动 1476168
关于科研通互助平台的介绍 1447839