Automated segmentation of optic disc and optic cup for glaucoma assessment using improved UNET++ architecture

视盘 视杯(胚胎学) 青光眼 计算机科学 分割 视神经 人工智能 特征(语言学) 光盘 验光服务 眼科 医学 生物化学 化学 语言学 哲学 基因 眼睛发育 表型
作者
Akshat Tulsani,Preetham Kumar,Sumaiya Pathan
出处
期刊:Biocybernetics and Biomedical Engineering [Elsevier BV]
卷期号:41 (2): 819-832 被引量:33
标识
DOI:10.1016/j.bbe.2021.05.011
摘要

Glaucoma is one of the leading cause of blindness for over 60 million people around the world. Since a cure for glaucoma doesn’t yet exist, early screening and diagnosis become critical for the prevention of the disease. Optic disc and optic cup evaluation are one of the preeminent steps for glaucoma diagnosis. A novel approach is developed in this paper for the identification of glaucoma using a segmentation based approach on the optic disc and optic cup. The Dhristi dataset was used to help improve performance on a small dataset. A custom UNET++ model is built for the segmentation task by tuning the hyper-parameters in addition to a custom loss function. The developed loss function helps tackle the class imbalance occurring due to small size of the optic nerve head. The proposed approach achieves 96% accuracy in classifying glaucomatous and non-glaucomatous images based on clinical feature identification. The improvised model is able to achieve state-of-art results for Intersection over Union (IOU) scores, 0.9477 for optic disc and 0.9321 for optic cup, along with providing an enhancement in reducing the training time. The model was tested on publicly available datasets RIM-ONE, DRIONS-DB and ORIGA and is able to achieve an accuracy of 91%, 92% and 90% respectively. The developed approach is validated by training it over RIM-ONE dataset independently, without changing any model parameters. The model provides significant improvement in segmentation of the optic disc and optic cup along with improvement in training time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xi完成签到,获得积分10
1秒前
123完成签到,获得积分20
2秒前
LYF000666完成签到 ,获得积分10
2秒前
2秒前
香蕉觅云应助潇洒沁采纳,获得10
2秒前
Authorll发布了新的文献求助10
2秒前
3秒前
3秒前
一路生花发布了新的文献求助30
4秒前
毛脸雷公嘴完成签到,获得积分10
4秒前
4秒前
4秒前
xiaolu完成签到,获得积分10
5秒前
陌上流年发布了新的文献求助100
5秒前
FF完成签到,获得积分10
5秒前
6秒前
7秒前
xi发布了新的文献求助10
7秒前
7秒前
彭于晏应助典雅的菲音采纳,获得10
8秒前
若即若离完成签到,获得积分20
8秒前
可爱的函函应助可爱因子采纳,获得10
8秒前
camellia发布了新的文献求助10
8秒前
顾矜应助一二三采纳,获得10
9秒前
9秒前
9秒前
10秒前
骆一锅完成签到,获得积分20
10秒前
香蕉觅云应助懵懂的怜翠采纳,获得10
11秒前
浩纳发布了新的文献求助10
11秒前
fgh发布了新的文献求助10
12秒前
king发布了新的文献求助10
12秒前
若即若离发布了新的文献求助10
12秒前
云起龙都发布了新的文献求助10
12秒前
共享精神应助xixi采纳,获得10
12秒前
13秒前
13秒前
酷波er应助wang采纳,获得10
14秒前
15秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3745576
求助须知:如何正确求助?哪些是违规求助? 3288529
关于积分的说明 10059330
捐赠科研通 3004763
什么是DOI,文献DOI怎么找? 1649819
邀请新用户注册赠送积分活动 785583
科研通“疑难数据库(出版商)”最低求助积分说明 751137