Diagnosis and grading of vesicoureteral reflux on voiding cystourethrography images in children using a deep hybrid model

膀胱输尿管反流 膀胱尿道造影 医学 分级(工程) 输尿管 泌尿系统 回流 放射科 泌尿科 内科学 工程类 土木工程 疾病
作者
Yeşim Eroğlu,Kadir Yıldırım,Ahmet Çınar,Muhammed Yıldırım
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:210: 106369-106369 被引量:25
标识
DOI:10.1016/j.cmpb.2021.106369
摘要

Vesicoureteral reflux is the leakage of urine from the bladder into the ureter. As a result, urinary tract infections and kidney scarring can occur in children. Voiding cystourethrography is the primary radiological imaging method used to diagnose vesicoureteral reflux in children with a history of recurrent urinary tract infection. Besides the diagnosis of reflux, it is graded with voiding cystourethrography. In this study, we aimed to diagnose and grade vesicoureteral reflux in Voiding cystourethrography images using hybrid CNN in deep learning methods. Images of pediatric patients diagnosed with VUR between 2016 and 2021 in our hospital (Firat University Hospital) were graded according to the international vesicoureteral reflux radiographic grading system. VCUG images of 236 normal and 992 with vesicoureteral reflux pediatric patients were available. A total of 6 classes were created as normal and graded 1-5 patients. In this study, a hybrid-based mRMR (Minimum Redundancy Maximum Relevance) using CNN (Convolutional Neural Networks) model is developed for the diagnosis and grading of vesicoureteral reflux on voiding cystourethrography images. Googlenet, MobilenetV2, and Densenet201 models are used as a part of the hybrid architecture. The obtained features from these architectures are examined in concatenating process. Then, these features are classified in machine learning classifiers after optimizing with the mRMR method. Among the models used in the study, the highest accuracy value was obtained in the proposed model with an accuracy rate of 96.9%. It shows that the hybrid model developed according to the findings of our study can be used in the diagnosis and grading of vesicoureteral reflux in voiding cystourethrography images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
1秒前
2秒前
所所应助长理物电强采纳,获得10
3秒前
勤恳马里奥完成签到,获得积分0
3秒前
4秒前
毛豆应助太阳采纳,获得10
5秒前
毛豆应助太阳采纳,获得10
5秒前
加油应助太阳采纳,获得10
5秒前
戈惜完成签到 ,获得积分10
6秒前
周斯越发布了新的文献求助10
6秒前
疯少发布了新的文献求助20
7秒前
Isi发布了新的文献求助10
7秒前
冷静白晴完成签到,获得积分10
9秒前
星星完成签到 ,获得积分10
10秒前
faiting完成签到,获得积分10
11秒前
WCheng完成签到,获得积分10
11秒前
Akasazi发布了新的文献求助10
14秒前
15秒前
温柔的中蓝完成签到,获得积分10
15秒前
科研通AI2S应助典雅的俊驰采纳,获得10
15秒前
16秒前
Negan完成签到,获得积分10
16秒前
orixero应助疯少采纳,获得10
17秒前
17秒前
六仔完成签到,获得积分10
19秒前
DD立芬完成签到 ,获得积分10
19秒前
源源源完成签到 ,获得积分10
20秒前
华仔应助123采纳,获得10
21秒前
11发布了新的文献求助10
21秒前
21秒前
CodeCraft应助就这样采纳,获得10
23秒前
24秒前
27秒前
顺利发表发布了新的文献求助10
29秒前
多多发布了新的文献求助30
29秒前
36456657应助Never stall采纳,获得10
29秒前
11完成签到,获得积分10
30秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308509
求助须知:如何正确求助?哪些是违规求助? 2941822
关于积分的说明 8506144
捐赠科研通 2616825
什么是DOI,文献DOI怎么找? 1429824
科研通“疑难数据库(出版商)”最低求助积分说明 663919
邀请新用户注册赠送积分活动 649040