反向传播
人工神经网络
光子学
MNIST数据库
计算机科学
人工智能
深度学习
电子工程
可扩展性
算法
材料科学
光电子学
工程类
数据库
作者
Sunil Pai,Zhongyuan Sun,Tyler W. Hughes,Tae-Won Park,Ben Bartlett,Ian A. D. Williamson,Momchil Minkov,Maziyar Milanizadeh,Nathnael Abebe,Francesco Morichetti,Andrea Melloni,Shanhui Fan,Olav Solgaard,David A. B. Miller
出处
期刊:Science
[American Association for the Advancement of Science (AAAS)]
日期:2023-04-28
卷期号:380 (6643): 398-404
被引量:19
标识
DOI:10.1126/science.ade8450
摘要
Integrated photonic neural networks provide a promising platform for energy-efficient, high-throughput machine learning with extensive scientific and commercial applications. Photonic neural networks efficiently transform optically encoded inputs using Mach-Zehnder interferometer mesh networks interleaved with nonlinearities. We experimentally trained a three-layer, four-port silicon photonic neural network with programmable phase shifters and optical power monitoring to solve classification tasks using “in situ backpropagation,” a photonic analog of the most popular method to train conventional neural networks. We measured backpropagated gradients for phase-shifter voltages by interfering forward- and backward-propagating light and simulated in situ backpropagation for 64-port photonic neural networks trained on MNIST image recognition given errors. All experiments performed comparably to digital simulations ( > 94% test accuracy), and energy scaling analysis indicated a route to scalable machine learning.
科研通智能强力驱动
Strongly Powered by AbleSci AI