反向传播
人工神经网络
光子学
MNIST数据库
计算机科学
人工智能
深度学习
电子工程
可扩展性
算法
材料科学
光电子学
工程类
数据库
作者
Sunil Pai,Zhanghao Sun,Tyler W. Hughes,Tae‐Won Park,Ben Bartlett,Ian A. D. Williamson,Momchil Minkov,Maziyar Milanizadeh,Nathnael Abebe,Francesco Morichetti,Andrea Melloni,Shanhui Fan,Olav Solgaard,David A. B. Miller
出处
期刊:Science
[American Association for the Advancement of Science (AAAS)]
日期:2023-04-27
卷期号:380 (6643): 398-404
被引量:238
标识
DOI:10.1126/science.ade8450
摘要
Integrated photonic neural networks provide a promising platform for energy-efficient, high-throughput machine learning with extensive scientific and commercial applications. Photonic neural networks efficiently transform optically encoded inputs using Mach-Zehnder interferometer mesh networks interleaved with nonlinearities. We experimentally trained a three-layer, four-port silicon photonic neural network with programmable phase shifters and optical power monitoring to solve classification tasks using “in situ backpropagation,” a photonic analog of the most popular method to train conventional neural networks. We measured backpropagated gradients for phase-shifter voltages by interfering forward- and backward-propagating light and simulated in situ backpropagation for 64-port photonic neural networks trained on MNIST image recognition given errors. All experiments performed comparably to digital simulations ( > 94% test accuracy), and energy scaling analysis indicated a route to scalable machine learning.
科研通智能强力驱动
Strongly Powered by AbleSci AI