已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Experimentally realized in situ backpropagation for deep learning in photonic neural networks

反向传播 人工神经网络 光子学 MNIST数据库 计算机科学 人工智能 深度学习 电子工程 可扩展性 算法 材料科学 光电子学 工程类 数据库
作者
Sunil Pai,Zhanghao Sun,Tyler W. Hughes,Tae‐Won Park,Ben Bartlett,Ian A. D. Williamson,Momchil Minkov,Maziyar Milanizadeh,Nathnael Abebe,Francesco Morichetti,Andrea Melloni,Shanhui Fan,Olav Solgaard,David A. B. Miller
出处
期刊:Science [American Association for the Advancement of Science]
卷期号:380 (6643): 398-404 被引量:158
标识
DOI:10.1126/science.ade8450
摘要

Neural networks are widely deployed models across many scientific disciplines and commercial endeavors ranging from edge computing and sensing to large-scale signal processing in data centers. The most efficient and well-entrenched method to train such networks is backpropagation, or reverse-mode automatic differentiation. To counter an exponentially increasing energy budget in the artificial intelligence sector, there has been recent interest in analog implementations of neural networks, specifically nanophotonic neural networks for which no analog backpropagation demonstration exists. We design mass-manufacturable silicon photonic neural networks that alternately cascade our custom designed "photonic mesh" accelerator with digitally implemented nonlinearities. These reconfigurable photonic meshes program computationally intensive arbitrary matrix multiplication by setting physical voltages that tune the interference of optically encoded input data propagating through integrated Mach-Zehnder interferometer networks. Here, using our packaged photonic chip, we demonstrate in situ backpropagation for the first time to solve classification tasks and evaluate a new protocol to keep the entire gradient measurement and update of physical device voltages in the analog domain, improving on past theoretical proposals. Our method is made possible by introducing three changes to typical photonic meshes: (1) measurements at optical "grating tap" monitors, (2) bidirectional optical signal propagation automated by fiber switch, and (3) universal generation and readout of optical amplitude and phase. After training, our classification achieves accuracies similar to digital equivalents even in presence of systematic error. Our findings suggest a new training paradigm for photonics-accelerated artificial intelligence based entirely on a physical analog of the popular backpropagation technique.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王倩颖完成签到,获得积分10
1秒前
852应助小王采纳,获得10
1秒前
松林完成签到,获得积分20
1秒前
所所应助红豆盖饭采纳,获得10
2秒前
clove发布了新的文献求助10
4秒前
浮游应助maowei采纳,获得10
4秒前
木小易完成签到,获得积分10
5秒前
endocrine完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
星辰大海应助ceeray23采纳,获得20
7秒前
小超完成签到,获得积分10
8秒前
晴雨天完成签到 ,获得积分10
10秒前
niuma发布了新的文献求助10
10秒前
斯文败类应助lxy采纳,获得10
10秒前
endocrine发布了新的文献求助10
11秒前
优秀不愁发布了新的文献求助10
12秒前
16秒前
17秒前
英俊的铭应助ceeray23采纳,获得20
17秒前
茉莉完成签到 ,获得积分10
18秒前
酷波er应助clove采纳,获得10
19秒前
信哥哥发布了新的文献求助10
19秒前
19秒前
橙橙橙橙发布了新的文献求助10
20秒前
23秒前
23秒前
Owen应助暮然采纳,获得10
24秒前
25秒前
科研小白发布了新的文献求助10
25秒前
26秒前
王仙人发布了新的文献求助10
27秒前
liu发布了新的文献求助10
28秒前
28秒前
zhang完成签到,获得积分10
29秒前
无花果应助科研小白采纳,获得10
29秒前
红豆盖饭发布了新的文献求助10
32秒前
32秒前
SCI完成签到,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
Atlas of the Rabbit Brain and Spinal Cord 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5018389
求助须知:如何正确求助?哪些是违规求助? 4257734
关于积分的说明 13269841
捐赠科研通 4062244
什么是DOI,文献DOI怎么找? 2221850
邀请新用户注册赠送积分活动 1231029
关于科研通互助平台的介绍 1153784