Experimentally realized in situ backpropagation for deep learning in photonic neural networks

反向传播 人工神经网络 光子学 MNIST数据库 计算机科学 人工智能 深度学习 电子工程 可扩展性 算法 材料科学 光电子学 工程类 数据库
作者
Sunil Pai,Zhanghao Sun,Tyler W. Hughes,Tae‐Won Park,Ben Bartlett,Ian A. D. Williamson,Momchil Minkov,Maziyar Milanizadeh,Nathnael Abebe,Francesco Morichetti,Andrea Melloni,Shanhui Fan,Olav Solgaard,David A. B. Miller
出处
期刊:Science [American Association for the Advancement of Science]
卷期号:380 (6643): 398-404 被引量:158
标识
DOI:10.1126/science.ade8450
摘要

Neural networks are widely deployed models across many scientific disciplines and commercial endeavors ranging from edge computing and sensing to large-scale signal processing in data centers. The most efficient and well-entrenched method to train such networks is backpropagation, or reverse-mode automatic differentiation. To counter an exponentially increasing energy budget in the artificial intelligence sector, there has been recent interest in analog implementations of neural networks, specifically nanophotonic neural networks for which no analog backpropagation demonstration exists. We design mass-manufacturable silicon photonic neural networks that alternately cascade our custom designed "photonic mesh" accelerator with digitally implemented nonlinearities. These reconfigurable photonic meshes program computationally intensive arbitrary matrix multiplication by setting physical voltages that tune the interference of optically encoded input data propagating through integrated Mach-Zehnder interferometer networks. Here, using our packaged photonic chip, we demonstrate in situ backpropagation for the first time to solve classification tasks and evaluate a new protocol to keep the entire gradient measurement and update of physical device voltages in the analog domain, improving on past theoretical proposals. Our method is made possible by introducing three changes to typical photonic meshes: (1) measurements at optical "grating tap" monitors, (2) bidirectional optical signal propagation automated by fiber switch, and (3) universal generation and readout of optical amplitude and phase. After training, our classification achieves accuracies similar to digital equivalents even in presence of systematic error. Our findings suggest a new training paradigm for photonics-accelerated artificial intelligence based entirely on a physical analog of the popular backpropagation technique.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
niuniuniu完成签到,获得积分10
刚刚
星辰大海应助YuJianQiao采纳,获得10
刚刚
Pinkie发布了新的文献求助10
1秒前
疯狂的海亦完成签到,获得积分10
2秒前
3秒前
李沐唅发布了新的文献求助10
3秒前
3秒前
3秒前
小代发布了新的文献求助10
5秒前
5秒前
Cristina2024完成签到,获得积分10
6秒前
赵李锋完成签到,获得积分10
8秒前
8秒前
锦鲤发布了新的文献求助10
9秒前
年轻的大炮完成签到,获得积分10
10秒前
10秒前
be发布了新的文献求助10
11秒前
HKL完成签到 ,获得积分10
12秒前
13秒前
lili完成签到 ,获得积分10
14秒前
15秒前
理来服完成签到,获得积分10
18秒前
18秒前
Mankind完成签到,获得积分10
18秒前
19秒前
20秒前
Hello应助大bulingbulin采纳,获得10
20秒前
21秒前
21秒前
鲤鱼寒荷发布了新的文献求助10
23秒前
青晨发布了新的文献求助10
24秒前
25秒前
25秒前
Pinkie完成签到,获得积分10
27秒前
pluto应助haifang采纳,获得10
27秒前
28秒前
鲤鱼寒荷完成签到,获得积分10
28秒前
30秒前
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959677
求助须知:如何正确求助?哪些是违规求助? 3505910
关于积分的说明 11126825
捐赠科研通 3237865
什么是DOI,文献DOI怎么找? 1789389
邀请新用户注册赠送积分活动 871691
科研通“疑难数据库(出版商)”最低求助积分说明 802963