Experimentally realized in situ backpropagation for deep learning in photonic neural networks

反向传播 人工神经网络 光子学 MNIST数据库 计算机科学 人工智能 深度学习 电子工程 可扩展性 算法 材料科学 光电子学 工程类 数据库
作者
Sunil Pai,Zhanghao Sun,Tyler W. Hughes,Tae‐Won Park,Ben Bartlett,Ian A. D. Williamson,Momchil Minkov,Maziyar Milanizadeh,Nathnael Abebe,Francesco Morichetti,Andrea Melloni,Shanhui Fan,Olav Solgaard,David A. B. Miller
出处
期刊:Science [American Association for the Advancement of Science]
卷期号:380 (6643): 398-404 被引量:145
标识
DOI:10.1126/science.ade8450
摘要

Neural networks are widely deployed models across many scientific disciplines and commercial endeavors ranging from edge computing and sensing to large-scale signal processing in data centers. The most efficient and well-entrenched method to train such networks is backpropagation, or reverse-mode automatic differentiation. To counter an exponentially increasing energy budget in the artificial intelligence sector, there has been recent interest in analog implementations of neural networks, specifically nanophotonic neural networks for which no analog backpropagation demonstration exists. We design mass-manufacturable silicon photonic neural networks that alternately cascade our custom designed "photonic mesh" accelerator with digitally implemented nonlinearities. These reconfigurable photonic meshes program computationally intensive arbitrary matrix multiplication by setting physical voltages that tune the interference of optically encoded input data propagating through integrated Mach-Zehnder interferometer networks. Here, using our packaged photonic chip, we demonstrate in situ backpropagation for the first time to solve classification tasks and evaluate a new protocol to keep the entire gradient measurement and update of physical device voltages in the analog domain, improving on past theoretical proposals. Our method is made possible by introducing three changes to typical photonic meshes: (1) measurements at optical "grating tap" monitors, (2) bidirectional optical signal propagation automated by fiber switch, and (3) universal generation and readout of optical amplitude and phase. After training, our classification achieves accuracies similar to digital equivalents even in presence of systematic error. Our findings suggest a new training paradigm for photonics-accelerated artificial intelligence based entirely on a physical analog of the popular backpropagation technique.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
leyangya完成签到,获得积分10
刚刚
1秒前
pbj发布了新的文献求助10
1秒前
在水一方应助香蕉乌冬面采纳,获得10
1秒前
大模型应助俏皮的芝麻采纳,获得10
3秒前
rio完成签到 ,获得积分10
3秒前
susu发布了新的文献求助10
4秒前
leyangya发布了新的文献求助10
4秒前
5秒前
小马甲应助英勇的灯泡采纳,获得10
6秒前
机灵的冰夏完成签到,获得积分10
7秒前
邓炎林完成签到,获得积分10
7秒前
8秒前
10秒前
10秒前
上官若男应助guoguo采纳,获得10
10秒前
大模型应助pbj采纳,获得10
11秒前
11秒前
Albert007发布了新的文献求助10
12秒前
jbtjht发布了新的文献求助20
13秒前
Bryce完成签到,获得积分10
14秒前
uwe完成签到,获得积分10
14秒前
脑洞疼应助伍秋望采纳,获得10
14秒前
15秒前
科研狗完成签到,获得积分10
16秒前
17秒前
17秒前
17秒前
科研通AI5应助顺利的绿柏采纳,获得100
18秒前
晓晓雪完成签到 ,获得积分10
19秒前
科研通AI2S应助tuanheqi采纳,获得20
19秒前
20秒前
wwz完成签到,获得积分10
23秒前
陈龙发布了新的文献求助200
24秒前
李健应助种桃老总采纳,获得10
25秒前
25秒前
yyyaooo发布了新的文献求助10
25秒前
27秒前
28秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740036
求助须知:如何正确求助?哪些是违规求助? 3283017
关于积分的说明 10033401
捐赠科研通 2999877
什么是DOI,文献DOI怎么找? 1646203
邀请新用户注册赠送积分活动 783409
科研通“疑难数据库(出版商)”最低求助积分说明 750356