A hybrid framework based on knowledge distillation for explainable disease diagnosis

可解释性 组分(热力学) 计算机科学 人工智能 模糊逻辑 机器学习 补语(音乐) 蒸馏 数据挖掘 模糊规则 基于规则的系统 模糊控制系统 物理 表型 基因 生物化学 有机化学 化学 互补 热力学
作者
Xihua Li,Qikun Shen
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 121844-121844 被引量:8
标识
DOI:10.1016/j.eswa.2023.121844
摘要

Deep learning (DL) techniques provide highly accurate disease predictions by extracting implicit higher-order correlations between features. However, DL opinions are not advisable for direct clinical practice because they lack interpretability in their reasoning logic. Fuzzy rule-based systems (FRBSs) can provide transparent and effective diagnostic results, but the rule explosion problem and the long-tail distribution of rules weaken their performance. Therefore, DL and FRBS complement each other. This paper proposes a hybrid framework based on DL models and fuzzy rules for explainable disease diagnosis. This framework has three components: interpretable component, uninterpretable component, and knowledge distillation component. In the interpretable component, we propose a strong rule extraction method to avoid the rule explosion problem and the long-tail distribution of rules by discarding weak rules. In the uninterpretable component, we use DL models to capture the implicit higher-order interactions between features to improve the model's performance. The knowledge distillation component embeds the hidden knowledge extracted from DL models into SFRBSs to guide the parameter tuning. This framework can predict new instances and provide interpretable prediction results by extracting explicit knowledge (fuzzy rules) and feature weights. Experimental results based on three real-world medical datasets show that the framework achieves the highest AUC and accuracy, which is more accurate and interpretable than other diagnostic models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
带路完成签到,获得积分10
刚刚
迷路采珊完成签到,获得积分10
1秒前
能干世倌完成签到,获得积分10
1秒前
wqwq69完成签到,获得积分10
1秒前
想把太阳揣兜里完成签到,获得积分10
2秒前
老张完成签到,获得积分10
2秒前
秃瓢完成签到,获得积分10
3秒前
one完成签到 ,获得积分10
3秒前
3秒前
Hina完成签到,获得积分10
3秒前
钟垠州应助jjj采纳,获得1000
3秒前
meizi0109完成签到 ,获得积分10
5秒前
5秒前
xdd完成签到,获得积分10
5秒前
无花果应助Lengbo采纳,获得10
5秒前
善良紫完成签到,获得积分10
6秒前
老迟到的友菱完成签到,获得积分10
6秒前
7秒前
量子星尘发布了新的文献求助30
9秒前
Lengbo发布了新的文献求助10
9秒前
zy大章鱼完成签到,获得积分10
9秒前
温暖紫菜完成签到,获得积分10
10秒前
pebble完成签到,获得积分10
10秒前
酷波er应助小鱼医生采纳,获得10
11秒前
Survive完成签到,获得积分10
11秒前
懵懂的明辉完成签到,获得积分10
12秒前
巧克力手印完成签到,获得积分10
12秒前
观莲客完成签到,获得积分10
13秒前
魔幻的锦程完成签到,获得积分10
14秒前
whyme完成签到,获得积分10
14秒前
踏实的盼秋完成签到,获得积分10
15秒前
开心的谷兰完成签到,获得积分10
15秒前
3230600402发布了新的文献求助30
16秒前
fool完成签到,获得积分10
16秒前
17秒前
yinger1984完成签到,获得积分10
17秒前
zh完成签到,获得积分10
17秒前
lhl完成签到,获得积分10
18秒前
几又完成签到,获得积分10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953552
求助须知:如何正确求助?哪些是违规求助? 3499089
关于积分的说明 11093922
捐赠科研通 3229669
什么是DOI,文献DOI怎么找? 1785711
邀请新用户注册赠送积分活动 869476
科研通“疑难数据库(出版商)”最低求助积分说明 801478