下调和上调
穆勒胶质细胞
细胞生物学
视网膜
线粒体融合
生物
谷氨酸受体
神经胶质
线粒体
化学
神经科学
生物化学
线粒体DNA
中枢神经系统
祖细胞
干细胞
基因
受体
作者
Ying Qian,Hongdou Luo,Zhi Xie,Yi Huang,Haijian Hu,Ming Jin,Ke Xu,Yulian Pang,Yuning Song,Xu Zhang
摘要
This study aimed to investigate the role of SIRT4 in retinal protection, specifically its ability to mitigate excitotoxic damage to Müller glial cells through the regulation of mitochondrial dynamics and glutamate transporters (GLASTs). A model of retinal excitatory neurotoxicity was established in mice. Proteins related to mitochondrial dynamics, GLAST, and SIRT4 were analyzed on days 0, 1, 3, and 5 following toxic injury. The influence of SIRT4 on mitochondrial dynamics-related proteins and GLAST was examined by inducing SIRT4 overexpression through intraperitoneal injection of resveratrol or by using SIRT4 knockout (KO) mice. Additionally, the effects of upregulating and downregulating SIRT4 expression in rat Müller glial cell lines (rMC-1) were explored via lentiviral vector transfection to assess changes in mitochondrial morphology and GLAST expression. After excitotoxic injury to the mouse retina, the retinal thickness and structure were disrupted, the number of retinal ganglion cells (RGCs) decreased, and Müller glial cells were activated by day 1. The levels of OPA1, GLAST, and SIRT4 proteins peaked on the first day after injury and then gradually decreased, indicating a synchronized dynamic trend. The upregulation of SIRT4 expression promoted OPA1 and GLAST protein expression, thereby alleviating retinal excitotoxic injury. Furthermore, the upregulation of SIRT4 expression promoted mitochondrial fusion and increased GLAST expression in rMC-1 cells, reducing cellular excitotoxic damage. Conversely, downregulation of SIRT4 had the opposite effect. SIRT4 plays a significant role in mitigating excitotoxic damage in the retina, modulating Müller glial cell injury by regulating mitochondrial dynamics and glutamate transporter expression, ultimately influencing retinal health.
科研通智能强力驱动
Strongly Powered by AbleSci AI