Rational Design of N-Acetylglucosamine-2-epimerase and N-Acetylneuraminic Lyase for Efficient N-Acetylneuraminic Acid Biosynthesis

N-乙酰神经氨酸 化学 生物化学 生物合成 立体化学 唾液酸
作者
Yamada Mo,Xiaojiang Li,Qingbin Li,Han Yuanfei,Tianyuan Su,Peng Zhao,Liping Qiao,Myung Xik Xiang,Li Fan,Xueping Guo,Meng-Meng Liu,Qingsheng Qi
出处
期刊:Journal of Agricultural and Food Chemistry [American Chemical Society]
标识
DOI:10.1021/acs.jafc.4c10307
摘要

N-Acetylneuraminic acid (NeuAc) performs a variety of biological activities where it is used as a nutraceutical and pharmaceutical intermediate. N-Acetylglucosamine-2-epimerase (AGE) and N-acetylneuraminic lyase (NAL) are the most widely used key enzymes in the industrial production of NeuAc through whole-cell catalytic synthesis. However, both AGE and NAL catalyze reversible reactions, and the equilibrium of these two reactions lies between substrates and products, resulting in a lower conversion rate of NeuAc. In this study, affinity analysis based on the dynamic docking (ADD) strategy was used to rationally design the AGE and NAL to improve enzymes properties. The variant AGEA172S/C118A showed a 2.19-fold improvement in the catalytic rate. Then, we combinatorially expressed the variant of AGE and NAL in two plasmids for whole cell catalytic synthesis. NeuAc production was 35% higher with the combination of AGEA172S/C118A and NALF252M compared with the wild type. When substrate GlcNAc/Pyruvate was 3:8 and AGEA172S/C118A and NALF252M expressed strains were 1:0.6, the molar conversion rate was 62%. Thus, our modification of AGE and NAL, the key enzymes in producing NeuAc, gave a better AGE variant AGEA172S/C118A, which could produce 128 g/L NeuAc when using low substrate concentration (0.6 M GlcNAc).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
66ds发布了新的文献求助10
1秒前
爱躺的菜鸟完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
3秒前
风中听枫发布了新的文献求助10
3秒前
3秒前
4秒前
accept完成签到,获得积分10
5秒前
5秒前
研友_VZG7GZ应助暗香采纳,获得20
6秒前
浦肯野应助深情元蝶采纳,获得80
6秒前
CipherSage应助深情元蝶采纳,获得10
6秒前
123完成签到,获得积分10
7秒前
Endymion发布了新的文献求助10
7秒前
00发布了新的文献求助10
7秒前
xi发布了新的文献求助10
8秒前
8秒前
pluto应助简单的期待采纳,获得30
9秒前
大模型应助xuxuxu采纳,获得10
9秒前
文竹完成签到,获得积分10
10秒前
11秒前
李健的小迷弟应助jiap1120采纳,获得10
12秒前
面条完成签到,获得积分10
13秒前
wanci应助Endymion采纳,获得10
13秒前
15秒前
15秒前
思源应助科研通管家采纳,获得10
16秒前
16秒前
斯文败类应助科研通管家采纳,获得10
16秒前
李爱国应助科研通管家采纳,获得10
16秒前
Lucas应助科研通管家采纳,获得10
16秒前
lll关闭了lll文献求助
16秒前
20秒前
夕赣发布了新的文献求助10
20秒前
22秒前
22秒前
23秒前
李浩然发布了新的文献求助10
23秒前
高分求助中
Genetics: From Genes to Genomes 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3475840
求助须知:如何正确求助?哪些是违规求助? 3067547
关于积分的说明 9104650
捐赠科研通 2759116
什么是DOI,文献DOI怎么找? 1513963
邀请新用户注册赠送积分活动 699928
科研通“疑难数据库(出版商)”最低求助积分说明 699204