Engineering Helical Chirality in Metal-Coordinated Cyclodextrin Nanochannels

化学 手性(物理) 环糊精 金属 结晶学 纳米技术 有机化学 夸克 Nambu–Jona Lasinio模型 手征对称破缺 量子力学 物理 材料科学
作者
Zhiyuan Jiang,Zhi Chen,Xiujun Yu,Shuai Lu,Weitao Xu,Bo Yu,Charlotte L. Stern,Shuyi Li,Yue Zhao,Xinzhi Liu,Ye‐Qiang Han,Shuqi Chen,Kang Cai,Dengke Shen,Kaikai Ma,Xiaopeng Li,Xiao‐Yang Chen
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
标识
DOI:10.1021/jacs.4c14123
摘要

Helicates are a defining element of DNAs and proteins, with functions that are critical to a variety of biological processes. Cyclodextrins are promising candidates for forging multiple-stranded helicates with well-defined helicity, but a lack of available tools has precluded the construction of artificial helical nanochannels with a controllable geometry and helicity from these widely available chiral building blocks. Herein, we disclose a family of Ag6L2 helical nanochannels that can be readily assembled from α-cyclodextrin-derived ligands through coordination between pyridinyl groups and Ag+ cations. We discovered that the nanochannels exhibit either an M or a P helicity when the Ag+ cations adopt a tetrahedral coordination geometry while losing most of their helicity when the Ag+ cations are linearly coordinated. Both the geometry and helicity of the nanochannels can be precisely controlled by simply changing the number of methyl groups at the ortho positions of the pyridinyl ligands. The tetracoordinated Ag+ cations interconnect the helical nanochannels into an infinite two-dimensional coordinative network characterized by hexagonal tessellation. Theoretical calculations, which reveal lower energies of the helical conformations observed in crystals compared with those of their inverted counterparts, support the experimental results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jenny发布了新的文献求助30
1秒前
prosperp应助adsan采纳,获得50
1秒前
2秒前
琪音_xy发布了新的文献求助20
2秒前
3秒前
ru发布了新的文献求助10
3秒前
3秒前
席老四完成签到,获得积分10
5秒前
万能图书馆应助曾经不言采纳,获得10
6秒前
科研通AI5应助浴火重生采纳,获得10
6秒前
小二郎应助Wonder采纳,获得10
6秒前
Totravel完成签到,获得积分10
7秒前
科研通AI5应助ddkkkkkk采纳,获得10
7秒前
8秒前
猪猪hero发布了新的文献求助10
8秒前
8秒前
夏时安发布了新的文献求助10
9秒前
从容凌萱完成签到,获得积分20
9秒前
科研通AI5应助Cecilia采纳,获得10
10秒前
loong关注了科研通微信公众号
10秒前
11秒前
11秒前
渊崖曙春应助pp采纳,获得10
12秒前
Owen应助白华苍松采纳,获得10
13秒前
mascot0111完成签到,获得积分10
13秒前
小马甲应助滴滴哒哒采纳,获得10
13秒前
13秒前
13秒前
ccy完成签到 ,获得积分10
14秒前
14秒前
fifi04发布了新的文献求助30
15秒前
清秀蛟凤发布了新的文献求助10
16秒前
小蘑菇应助傲娇文博采纳,获得10
16秒前
16秒前
17秒前
楷.完成签到,获得积分20
17秒前
18秒前
18秒前
1了发布了新的文献求助10
18秒前
一大牛一发布了新的文献求助10
19秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3482716
求助须知:如何正确求助?哪些是违规求助? 3072248
关于积分的说明 9126270
捐赠科研通 2764017
什么是DOI,文献DOI怎么找? 1516797
邀请新用户注册赠送积分活动 701779
科研通“疑难数据库(出版商)”最低求助积分说明 700639