A metagene based similarity network fusion approach for multi-omics data integration identified novel subtypes in renal cell carcinoma

肾细胞癌 计算生物学 鉴定(生物学) 亚型 组学 生物信息学 生物 计算机科学 医学 肿瘤科 植物 程序设计语言
作者
Congcong Jia,Tong Wang,Dan Cui,Yaxin Tian,Gaiqin Liu,Zhaoyang Xu,Yanhong Luo,Ruiling Fang,Hongmei Yu,Yanbo Zhang,Yuehua Cui,Cao Hong-yan
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:25 (6) 被引量:1
标识
DOI:10.1093/bib/bbae606
摘要

Abstract Renal cell carcinoma (RCC) ranks among the most prevalent cancers worldwide, with both incidence and mortality rates increasing annually. The heterogeneity among RCC patients presents considerable challenges for developing universally effective treatment strategies, emphasizing the necessity of in-depth research into RCC’s molecular mechanisms, understanding the variations among RCC patients and further identifying distinct molecular subtypes for precise treatment. We proposed a metagene-based similarity network fusion (Meta-SNF) method for RCC subtype identification with multi-omics data, using a non-negative matrix factorization technique to capture alternative structures inherent in the dataset as metagenes. These latent metagenes were then integrated to construct a fused network under the Similarity Network Fusion (SNF) framework for more precise subtyping. We conducted simulation studies and analyzed real-world data from two RCC datasets, namely kidney renal clear cell carcinoma (KIRC) and kidney renal papillary cell carcinoma (KIRP) to demonstrate the utility of Meta-SNF. The simulation studies indicated that Meta-SNF achieved higher accuracy in subtype identification compared with the original SNF and other state-of-the-art methods. In analyses of real data, Meta-SNF produced more distinct and well-separated clusters, classifying both KIRC and KIRP into four subtypes with significant differences in survival outcomes. Subsequently, we performed comprehensive bioinformatics analyses focused on subtypes with poor prognoses in KIRC and KIRP and identified several potential biomarkers. Meta-SNF offers a novel strategy for subtype identification using multi-omics data, and its application to RCC datasets has yielded diverse biological insights which are highly valuable for informing clinical decision-making processes in the treatment of RCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
YaoX完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
YE发布了新的文献求助10
2秒前
2秒前
3秒前
张肥肥完成签到 ,获得积分20
3秒前
明亮的斩关注了科研通微信公众号
3秒前
科研通AI5应助搞怪的人龙采纳,获得10
3秒前
4秒前
xiuxiu_27完成签到 ,获得积分10
4秒前
李健应助qym采纳,获得10
5秒前
风趣的爆米花完成签到,获得积分20
5秒前
韭菜发布了新的文献求助10
5秒前
5秒前
5秒前
yzxzdm完成签到 ,获得积分10
6秒前
小破仁666发布了新的文献求助10
6秒前
6秒前
英姑应助优秀的逊采纳,获得10
7秒前
ccc完成签到,获得积分20
7秒前
7秒前
7秒前
小二郎应助诗谙采纳,获得10
7秒前
7秒前
7秒前
圣晟胜发布了新的文献求助10
8秒前
8秒前
等待幼荷完成签到,获得积分10
8秒前
笑言相欢ZMN完成签到,获得积分20
8秒前
8秒前
Eric发布了新的文献求助10
8秒前
gaos发布了新的文献求助10
9秒前
9秒前
9秒前
ipeakkka发布了新的文献求助10
9秒前
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740