A metagene based similarity network fusion approach for multi-omics data integration identified novel subtypes in renal cell carcinoma

肾细胞癌 计算生物学 鉴定(生物学) 亚型 组学 生物信息学 生物 计算机科学 医学 肿瘤科 植物 程序设计语言
作者
Congcong Jia,Tong Wang,Dan Cui,Yaxin Tian,Gaiqin Liu,Zhaoyang Xu,Yanhong Luo,Ruiling Fang,Hongmei Yu,Yanbo Zhang,Yuehua Cui,Cao Hong-yan
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:25 (6) 被引量:1
标识
DOI:10.1093/bib/bbae606
摘要

Abstract Renal cell carcinoma (RCC) ranks among the most prevalent cancers worldwide, with both incidence and mortality rates increasing annually. The heterogeneity among RCC patients presents considerable challenges for developing universally effective treatment strategies, emphasizing the necessity of in-depth research into RCC’s molecular mechanisms, understanding the variations among RCC patients and further identifying distinct molecular subtypes for precise treatment. We proposed a metagene-based similarity network fusion (Meta-SNF) method for RCC subtype identification with multi-omics data, using a non-negative matrix factorization technique to capture alternative structures inherent in the dataset as metagenes. These latent metagenes were then integrated to construct a fused network under the Similarity Network Fusion (SNF) framework for more precise subtyping. We conducted simulation studies and analyzed real-world data from two RCC datasets, namely kidney renal clear cell carcinoma (KIRC) and kidney renal papillary cell carcinoma (KIRP) to demonstrate the utility of Meta-SNF. The simulation studies indicated that Meta-SNF achieved higher accuracy in subtype identification compared with the original SNF and other state-of-the-art methods. In analyses of real data, Meta-SNF produced more distinct and well-separated clusters, classifying both KIRC and KIRP into four subtypes with significant differences in survival outcomes. Subsequently, we performed comprehensive bioinformatics analyses focused on subtypes with poor prognoses in KIRC and KIRP and identified several potential biomarkers. Meta-SNF offers a novel strategy for subtype identification using multi-omics data, and its application to RCC datasets has yielded diverse biological insights which are highly valuable for informing clinical decision-making processes in the treatment of RCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风清扬发布了新的文献求助10
刚刚
1秒前
3秒前
3秒前
4秒前
ZZ发布了新的文献求助10
4秒前
ye发布了新的文献求助10
4秒前
艾小晗发布了新的文献求助10
4秒前
4秒前
xi发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
7秒前
7秒前
脑洞疼应助风清扬采纳,获得10
8秒前
8秒前
wanci应助ccq采纳,获得10
8秒前
素简发布了新的文献求助10
8秒前
云行发布了新的文献求助10
9秒前
Owen应助WoxiC采纳,获得10
9秒前
Lucas应助超级的西装采纳,获得10
10秒前
怕黑半仙发布了新的文献求助10
12秒前
msk发布了新的文献求助10
12秒前
12秒前
WHB发布了新的文献求助10
13秒前
小禾一定行完成签到 ,获得积分10
13秒前
Mia完成签到,获得积分20
14秒前
18秒前
跳跃忆灵完成签到,获得积分10
18秒前
Akim应助素简采纳,获得10
20秒前
跳跃忆灵发布了新的文献求助10
22秒前
22秒前
22秒前
Liufgui应助DianaRang采纳,获得10
22秒前
我是老大应助独特元蝶采纳,获得10
26秒前
26秒前
charles发布了新的文献求助30
27秒前
kiki完成签到,获得积分10
29秒前
Lucas应助HHH采纳,获得10
32秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979662
求助须知:如何正确求助?哪些是违规求助? 3523636
关于积分的说明 11218202
捐赠科研通 3261164
什么是DOI,文献DOI怎么找? 1800473
邀请新用户注册赠送积分活动 879103
科研通“疑难数据库(出版商)”最低求助积分说明 807167