LMO-YOLO: A Ship Detection Model for Low-Resolution Optical Satellite Imagery

计算机科学 卫星 目标检测 人工智能 卷积神经网络 加权 计算机视觉 图像分辨率 遥感 模式识别(心理学) 地理 医学 放射科 工程类 航空航天工程
作者
Qizhi Xu,Yuan Li,Zhenwei Shi
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:15: 4117-4131 被引量:9
标识
DOI:10.1109/jstars.2022.3176141
摘要

It has been observed that the existing convolutional neural network (CNN)-based ship detection models often result in high false detection rate in low-resolution optical satellite images. This problem arises from the following factors: 1) the current 8-b rescaling schemes make the images lose some important information about ships in low-resolution imagery; 2) the effective features of ships at low resolution are far fewer than those of ships at high resolution; and 3) the detection of low-resolution ships is more sensitive to object-background contrast variation. To solve these problems, a low-resolution marine object (LMO) detection YOLO model, called LMO-YOLO, is proposed in this article. First, a multiple linear rescaling scheme is developed to quantize the original satellite images into 8-b images; second, dilated convolutions are included in a YOLO network to extract object features and object-background features; finally, an adaptive weighting scheme is designed to balance the loss between easy-to-detect ships and hard-to-detect ships. The proposed method was validated by level 1 product images captured by the wide-field-of-view sensor on the GaoFen-1 satellite. The experimental results demonstrated that our method accurately detected ships from low-resolution images and outperformed state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
害羞凡阳发布了新的文献求助10
刚刚
领导范儿应助贾旭采纳,获得30
1秒前
华仔应助snoopy448采纳,获得10
2秒前
子衿青青完成签到,获得积分10
2秒前
2秒前
追寻的山晴完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
4秒前
高兴凌波完成签到,获得积分20
4秒前
KT完成签到,获得积分10
5秒前
健忘半邪完成签到 ,获得积分10
6秒前
回到原点应助kiki采纳,获得10
6秒前
所所应助茉莉采纳,获得10
6秒前
7秒前
逢投必中发布了新的文献求助10
7秒前
小洪包完成签到,获得积分10
8秒前
花开发布了新的文献求助10
9秒前
大模型应助Wang采纳,获得10
9秒前
英姑应助小熊采纳,获得10
10秒前
脑洞疼应助追寻的可仁采纳,获得10
10秒前
11秒前
我是老大应助高兴凌波采纳,获得10
11秒前
keyandog完成签到,获得积分10
11秒前
12秒前
Amy完成签到 ,获得积分10
12秒前
打打应助小洪包采纳,获得10
12秒前
害羞凡阳完成签到,获得积分10
12秒前
ming发布了新的文献求助10
13秒前
cking完成签到,获得积分10
13秒前
14秒前
Ava应助秋风再起采纳,获得10
16秒前
Logom发布了新的文献求助10
17秒前
都是应助花开采纳,获得30
17秒前
嘿嘿关注了科研通微信公众号
18秒前
18秒前
19秒前
snoopy448完成签到,获得积分10
20秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155941
求助须知:如何正确求助?哪些是违规求助? 2807235
关于积分的说明 7872173
捐赠科研通 2465563
什么是DOI,文献DOI怎么找? 1312264
科研通“疑难数据库(出版商)”最低求助积分说明 629977
版权声明 601905