作者
NULL AUTHOR_ID,NULL AUTHOR_ID,NULL AUTHOR_ID,NULL AUTHOR_ID,Yucheng Jiang,Xinli Cheng,Kuaibing Wang,Chunlan Ma,Yang Li
摘要
Recently, an emerging class of hydrogen-bonded organic frameworks (HOFs) has become an appealing member of organic material family, attributed to their layered self-assembly structures, high-crystalline, and environmentally friendly characteristics, which have rapidly propelled their development in the field of electronic devices. In this context, we focus on the latest category of topological HOFs, with particular attention given to cutting-edge experimental demonstrations, exceptional electrical performances, and promising applications. First, a concise concept and fundamental mechanism of HOFs are provided, elucidating the potential correlation between structural designs and material properties. Subsequently, a comprehensive summary is presented on the preparation and synthesis methods, such as hydrothermal techniques, epitaxial growth, electro-deposition, among others. Notably, the latest advancements in HOFs-based electronics are thoroughly introduced and discussed, along with their applications in sensors, memristors, artificial synapses, neuromorphic computing, and human perception systems. Finally, the future challenges and prospects of topological HOFs are elaborated upon with the aim of providing valuable guidance for high-performance HOF-based electronics.