材料科学
超级电容器
碱性电池
电池(电)
可乐(植物)
纳米技术
化学工程
电化学
电极
植物
功率(物理)
化学
物理
物理化学
量子力学
工程类
生物
作者
Ding Zhang,Yingjie Hua,Xue Fu,Chih‐Chia Cheng,Defeng Kong,Meiling Zhang,Bing‐Xin Lei,Zhao‐Qing Liu
标识
DOI:10.1002/adfm.202414686
摘要
Abstract Nickel oxyhydroxide based energy storage materials have been largely confined by insufficient exposure of active sites which results in low energy efficiency and poor stability. In order to resolve the problems, hierarchical flower array heterostructure NiCoOOH@CoLa‐LDH (denoted as NC@CL) nanosheets are designed with NiCo oxyhydroxide (NiCoOOH, denoted as NC) being tightly covered on CoLa layered double hydroxide (CoLa‐LDH, denoted as CL) nanosheet. This rational design creates more active sites, enlarges the electrode‐electrolyte contact area, improves electron conductivity, and prevents agglomeration during the cycling charge–discharge processes. Density functional theory calculations and differential charges concurrently illustrate that heterostructure formation optimizes the reaction kinetics and promotes electron redistribution. Benefiting from the heterogeneous structure and rich electro‐active sites caused by NC, NC@CL displays outstanding reversible specific capacitance (3228 F g −1 at 1 A g −1 ). The aqueous rechargeable alkaline Zn battery NC@CL//Zn exhibits a high capacity of 381.1 mA h g −1 at 0.5 A g −1 and cycling durability (98% capacity retention after cycling at 5 A g −1 for 2000 cycles). The excellent electrochemical performances indicate that NC@CL has great application potential as electrode material for aqueous energy storage device.
科研通智能强力驱动
Strongly Powered by AbleSci AI