异甘草素
GPX4
HMOX1型
脂质过氧化
谷胱甘肽
化学
癌症研究
体内
癌变
活性氧
分子生物学
生物
生物化学
抗氧化剂
谷胱甘肽过氧化物酶
血红素
血红素加氧酶
酶
生物技术
基因
作者
Zeyu Wang,Weijian Li,Xue Wang,Qin Zhu,Liguo Liu,Shimei Qiu,Lu Zou,Ke Liu,Guoqiang Li,Huijie Miao,Yang Yang,Chengkai Jiang,Yong Liu,Rong Shao,Xuan Wang,Yingbin Liu
标识
DOI:10.1097/cm9.0000000000002675
摘要
Abstract Background: Gallbladder cancer (GBC) is the most common malignant tumor of biliary tract. Isoliquiritigenin (ISL) is a natural compound with chalcone structure extracted from the roots of licorice and other plants. Relevant studies have shown that ISL has a strong anti-tumor ability in various types of tumors. However, the research of ISL against GBC has not been reported, which needs to be further investigated. Methods: The effects of ISL against GBC cells in vitro and in vivo were characterized by cytotoxicity test, RNA-sequencing, quantitative real-time polymerase chain reaction, reactive oxygen species (ROS) detection, lipid peroxidation detection, ferrous ion detection, glutathione disulphide/glutathione (GSSG/GSH) detection, lentivirus transfection, nude mice tumorigenesis experiment and immunohistochemistry. Results: ISL significantly inhibited the proliferation of GBC cells in vitro . The results of transcriptome sequencing and bioinformatics analysis showed that ferroptosis was the main pathway of ISL inhibiting the proliferation of GBC, and HMOX1 and GPX4 were the key molecules of ISL-induced ferroptosis. Knockdown of HMOX1 or overexpression of GPX4 can reduce the sensitivity of GBC cells to ISL-induced ferroptosis and significantly restore the viability of GBC cells. Moreover, ISL significantly reversed the iron content, ROS level, lipid peroxidation level and GSSG/GSH ratio of GBC cells. Finally, ISL significantly inhibited the growth of GBC in vivo and regulated the ferroptosis of GBC by mediating HMOX1 and GPX4 . Conclusion: ISL induced ferroptosis in GBC mainly by activating p62-Keap1-Nrf2-HMOX1 signaling pathway and down-regulating GPX4 in vitro and in vivo . This evidence may provide a new direction for the treatment of GBC.
科研通智能强力驱动
Strongly Powered by AbleSci AI