Fast and Stable Neonatal Brain MR Imaging Using Integrated Learned Subspace Model and Deep Learning

子空间拓扑 神经影像学 人工智能 计算机科学 深度学习 医学影像学 神经科学 心理学
作者
Ziwen Ke,Yue Guan,Tianyao Wang,Huixiang Zhuang,Zhan‐Ling Cheng,Yunpeng Zhang,Jing‐Ya Ren,Su‐Zhen Dong,Yao Li
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10
标识
DOI:10.1109/tbme.2025.3541643
摘要

To enable fast and stable neonatal brain MR imaging by integrating learned neonate-specific subspace model and model-driven deep learning. Fast data acquisition is critical for neonatal brain MRI, and deep learning has emerged as an effective tool to accelerate existing fast MRI methods by leveraging prior image information. However, deep learning often requires large amounts of training data to ensure stable image reconstruction, which is not currently available for neonatal MRI applications. In this work, we addressed this problem by utilizing a subspace model-assisted deep learning approach. Specifically, we used a subspace model to capture the spatial features of neonatal brain images. The learned neonate-specific subspace was then integrated with a deep network to reconstruct high-quality neonatal brain images from very sparse k-space data. The effectiveness and robustness of the proposed method were validated using both the dHCP dataset and testing data from four independent medical centers, yielding very encouraging results. The stability of the proposed method has been confirmed with different perturbations, all showing remarkably stable reconstruction performance. The flexibility of the learned subspace was also shown when combined with other deep neural networks, yielding improved image reconstruction performance. Fast and stable neonatal brain MR imaging can be achieved using subspace-assisted deep learning with sparse sampling. With further development, the proposed method may improve the practical utility of MRI in neonatal imaging applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
君君应助耶路撒冷曼陀罗采纳,获得20
刚刚
彭于晏应助云深不知处采纳,获得10
刚刚
yyj发布了新的文献求助10
1秒前
江河完成签到,获得积分10
1秒前
1秒前
情怀应助冰川下的小太阳采纳,获得10
2秒前
jasmine发布了新的文献求助10
2秒前
zy完成签到,获得积分10
3秒前
陈一晨111完成签到 ,获得积分10
3秒前
3秒前
Sofie完成签到,获得积分10
4秒前
开心仙人掌完成签到,获得积分10
4秒前
今后应助actor2006采纳,获得200
4秒前
英姑应助chenli采纳,获得10
5秒前
5秒前
小贝完成签到,获得积分10
5秒前
7秒前
wanci应助早点睡觉吧采纳,获得10
7秒前
Hellochem发布了新的文献求助10
7秒前
CipherSage应助洁净的天德采纳,获得10
7秒前
7秒前
8秒前
王火火完成签到 ,获得积分10
8秒前
领导范儿应助LLL采纳,获得10
9秒前
9秒前
深情安青应助瘦瘦灵寒采纳,获得20
9秒前
徐锋发布了新的文献求助10
10秒前
wb发布了新的文献求助30
10秒前
whh发布了新的文献求助10
10秒前
勤苦的牛马完成签到,获得积分10
10秒前
10秒前
11秒前
领导范儿应助努力哥采纳,获得10
11秒前
12秒前
msk发布了新的文献求助10
12秒前
天天向上发布了新的文献求助10
13秒前
思源应助吉尔吉斯斯坦采纳,获得10
14秒前
14秒前
dew应助斯文明杰采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5319745
求助须知:如何正确求助?哪些是违规求助? 4461682
关于积分的说明 13884225
捐赠科研通 4352426
什么是DOI,文献DOI怎么找? 2390560
邀请新用户注册赠送积分活动 1384341
关于科研通互助平台的介绍 1354051