Fast and Stable Neonatal Brain MR Imaging Using Integrated Learned Subspace Model and Deep Learning

子空间拓扑 神经影像学 人工智能 计算机科学 深度学习 医学影像学 神经科学 心理学
作者
Ziwen Ke,Yue Guan,Tianyao Wang,Huixiang Zhuang,Zhan‐Ling Cheng,Yunpeng Zhang,Jing‐Ya Ren,Su‐Zhen Dong,Yao Li
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10
标识
DOI:10.1109/tbme.2025.3541643
摘要

To enable fast and stable neonatal brain MR imaging by integrating learned neonate-specific subspace model and model-driven deep learning. Fast data acquisition is critical for neonatal brain MRI, and deep learning has emerged as an effective tool to accelerate existing fast MRI methods by leveraging prior image information. However, deep learning often requires large amounts of training data to ensure stable image reconstruction, which is not currently available for neonatal MRI applications. In this work, we addressed this problem by utilizing a subspace model-assisted deep learning approach. Specifically, we used a subspace model to capture the spatial features of neonatal brain images. The learned neonate-specific subspace was then integrated with a deep network to reconstruct high-quality neonatal brain images from very sparse k-space data. The effectiveness and robustness of the proposed method were validated using both the dHCP dataset and testing data from four independent medical centers, yielding very encouraging results. The stability of the proposed method has been confirmed with different perturbations, all showing remarkably stable reconstruction performance. The flexibility of the learned subspace was also shown when combined with other deep neural networks, yielding improved image reconstruction performance. Fast and stable neonatal brain MR imaging can be achieved using subspace-assisted deep learning with sparse sampling. With further development, the proposed method may improve the practical utility of MRI in neonatal imaging applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Nicky_N完成签到,获得积分20
2秒前
友好灵阳完成签到 ,获得积分10
3秒前
轻松念双完成签到,获得积分10
3秒前
3秒前
慕青应助SunGuangkai采纳,获得10
3秒前
3秒前
zwk发布了新的文献求助30
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
5秒前
bkagyin应助年年年年采纳,获得10
6秒前
liu完成签到,获得积分10
6秒前
brk发布了新的文献求助10
7秒前
沁晨完成签到,获得积分10
7秒前
小曾科研顺利完成签到 ,获得积分10
8秒前
8秒前
ay完成签到,获得积分10
9秒前
10秒前
海棠完成签到 ,获得积分10
10秒前
liu发布了新的文献求助10
10秒前
Nicky_N发布了新的文献求助30
11秒前
开心的吐司完成签到,获得积分10
11秒前
DJ_Tokyo完成签到,获得积分0
11秒前
彭于晏应助张婷采纳,获得10
12秒前
12秒前
科研通AI6应助杨佳楠采纳,获得10
13秒前
周乘风发布了新的文献求助10
13秒前
brk完成签到,获得积分10
14秒前
下雨了完成签到,获得积分10
15秒前
15秒前
英俊的铭应助Emma采纳,获得10
15秒前
Hello应助Yuanyuan采纳,获得10
16秒前
Duomo完成签到 ,获得积分10
17秒前
留胡子的火完成签到,获得积分10
17秒前
黄俊完成签到,获得积分10
18秒前
壮壮发布了新的文献求助10
18秒前
DMMM完成签到,获得积分10
18秒前
18秒前
量子星尘发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5524661
求助须知:如何正确求助?哪些是违规求助? 4615154
关于积分的说明 14546595
捐赠科研通 4553141
什么是DOI,文献DOI怎么找? 2495163
邀请新用户注册赠送积分活动 1475760
关于科研通互助平台的介绍 1447541