Fast and Stable Neonatal Brain MR Imaging Using Integrated Learned Subspace Model and Deep Learning

子空间拓扑 神经影像学 人工智能 计算机科学 深度学习 医学影像学 神经科学 心理学
作者
Ziwen Ke,Yue Guan,Tianyao Wang,Huixiang Zhuang,Zhan‐Ling Cheng,Yunpeng Zhang,Jing‐Ya Ren,Su‐Zhen Dong,Yao Li
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10
标识
DOI:10.1109/tbme.2025.3541643
摘要

To enable fast and stable neonatal brain MR imaging by integrating learned neonate-specific subspace model and model-driven deep learning. Fast data acquisition is critical for neonatal brain MRI, and deep learning has emerged as an effective tool to accelerate existing fast MRI methods by leveraging prior image information. However, deep learning often requires large amounts of training data to ensure stable image reconstruction, which is not currently available for neonatal MRI applications. In this work, we addressed this problem by utilizing a subspace model-assisted deep learning approach. Specifically, we used a subspace model to capture the spatial features of neonatal brain images. The learned neonate-specific subspace was then integrated with a deep network to reconstruct high-quality neonatal brain images from very sparse k-space data. The effectiveness and robustness of the proposed method were validated using both the dHCP dataset and testing data from four independent medical centers, yielding very encouraging results. The stability of the proposed method has been confirmed with different perturbations, all showing remarkably stable reconstruction performance. The flexibility of the learned subspace was also shown when combined with other deep neural networks, yielding improved image reconstruction performance. Fast and stable neonatal brain MR imaging can be achieved using subspace-assisted deep learning with sparse sampling. With further development, the proposed method may improve the practical utility of MRI in neonatal imaging applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
积极松鼠完成签到,获得积分10
刚刚
入暖完成签到,获得积分10
1秒前
1秒前
one完成签到 ,获得积分10
1秒前
完美的友蕊应助孟孟采纳,获得10
1秒前
沉静冬易完成签到,获得积分10
1秒前
个性的翠芙完成签到 ,获得积分10
1秒前
whitebird完成签到,获得积分10
2秒前
羊驼完成签到,获得积分10
2秒前
222发布了新的文献求助10
2秒前
青苔完成签到,获得积分10
3秒前
专注的书包完成签到,获得积分10
3秒前
Bonnienuit完成签到 ,获得积分10
4秒前
暖羊羊Y完成签到 ,获得积分10
4秒前
6秒前
何寒松发布了新的文献求助10
6秒前
撒玉完成签到,获得积分10
6秒前
fei完成签到,获得积分10
6秒前
wuxunxun2015完成签到,获得积分10
7秒前
做实验的猹完成签到,获得积分10
7秒前
pw完成签到 ,获得积分10
9秒前
小白鸽完成签到,获得积分10
9秒前
lzl007完成签到 ,获得积分10
9秒前
田...完成签到,获得积分10
9秒前
布莱橙完成签到,获得积分10
10秒前
dahuihui完成签到,获得积分10
10秒前
着急的柔完成签到,获得积分10
10秒前
125mmD91T完成签到,获得积分10
11秒前
苏杉杉完成签到,获得积分10
12秒前
kongchao008完成签到,获得积分10
13秒前
爽哥完成签到,获得积分10
13秒前
权秋尽完成签到,获得积分10
13秒前
Ava应助秋秋糖xte采纳,获得10
14秒前
MeiyanZou完成签到 ,获得积分10
14秒前
xliiii完成签到,获得积分10
17秒前
zhaoli完成签到 ,获得积分10
20秒前
21秒前
凡而不庸完成签到,获得积分10
21秒前
Woo完成签到 ,获得积分10
22秒前
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968593
求助须知:如何正确求助?哪些是违规求助? 3513416
关于积分的说明 11167791
捐赠科研通 3248853
什么是DOI,文献DOI怎么找? 1794507
邀请新用户注册赠送积分活动 875170
科研通“疑难数据库(出版商)”最低求助积分说明 804671