MultiCTox: Empowering Accurate Cardiotoxicity Prediction through Adaptive Multimodal Learning

心脏毒性 计算机科学 人工智能 机器学习 医学 内科学 化疗
作者
Lin Feng,Xiangxiang Zeng,Zhenya Du,Yuting Guo,Linlin Zhuo,Yan Yang,Dongsheng Cao,Xiaojun Yao
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.5c00022
摘要

Cardiotoxicity refers to the inhibitory effects of drugs on cardiac ion channels. Accurate prediction of cardiotoxicity is crucial yet challenging, as it directly impacts the evaluation of cardiac drug efficacy and safety. Numerous methods have been developed to predict cardiotoxicity, yet their performance remains limited. A key limitation is that these methods often rely solely on single-modal data, making multimodal data integration challenging. As a result, we present a multimodal method integrating molecular SMILES, structure, and fingerprint to enhance cardiotoxicity prediction. First, we designed a fusion layer to unify representations from different modalities. During training, the model maximizes intramodal similarity for the same molecule while minimizing intermolecular similarity, ensuring consistent cross-modal representations. This study evaluates the inhibitory effects of candidate drugs on voltage-gated potassium (hERG), sodium (Nav1.5), and calcium (Cav1.2) channels. Experimental results demonstrate that the proposed model significantly outperforms existing state-of-the-art methods in cardiotoxicity prediction. We anticipate that this model will contribute significantly to the development and safety evaluation of cardiac drugs, reducing cardiotoxicity-related risks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhongwei2284完成签到,获得积分10
1秒前
Lemon完成签到 ,获得积分10
1秒前
玩命的行云完成签到,获得积分10
2秒前
鲤鱼如容完成签到,获得积分10
2秒前
ATLI应助饱满一刀采纳,获得20
2秒前
2秒前
科研小白发布了新的文献求助20
2秒前
顾矜应助结实机器猫采纳,获得30
2秒前
orixero应助结实机器猫采纳,获得10
2秒前
伶俐的飞鸟完成签到 ,获得积分10
3秒前
3秒前
3秒前
4秒前
NexusExplorer应助贺万万采纳,获得30
4秒前
朴实初夏发布了新的文献求助10
6秒前
小李发布了新的文献求助10
7秒前
navvv完成签到,获得积分10
7秒前
Fluke应助生锈的铁片采纳,获得10
8秒前
ssq发布了新的文献求助10
9秒前
水果罐头完成签到,获得积分10
11秒前
11秒前
李健应助小李采纳,获得10
11秒前
充电宝应助22222采纳,获得10
11秒前
weizheng完成签到,获得积分10
12秒前
13秒前
勤劳冰烟应助时尚的代秋采纳,获得10
13秒前
香蕉觅云应助打工人采纳,获得10
13秒前
小马甲应助阔达的水壶采纳,获得10
14秒前
无限雨南完成签到,获得积分10
15秒前
小李完成签到,获得积分10
16秒前
zhuzhezhe完成签到,获得积分10
16秒前
17秒前
soar完成签到 ,获得积分10
17秒前
18秒前
今后应助周小丁采纳,获得10
18秒前
19秒前
Auston_zhong应助关键词采纳,获得10
19秒前
西伯利亚兔完成签到,获得积分10
19秒前
19秒前
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3669446
求助须知:如何正确求助?哪些是违规求助? 3227157
关于积分的说明 9773662
捐赠科研通 2937177
什么是DOI,文献DOI怎么找? 1609199
邀请新用户注册赠送积分活动 760130
科研通“疑难数据库(出版商)”最低求助积分说明 735760