RPLHR-CT Dataset and Transformer Baseline for Volumetric Super-Resolution from CT Scans

计算机科学 卷积神经网络 人工智能 超分辨率 水准点(测量) 深度学习 变压器 算法 数据挖掘 模式识别(心理学) 图像(数学) 工程类 大地测量学 电气工程 电压 地理
作者
Pengxin Yu,Haoyue Zhang,Kang Han,Wen Tang,Corey Arnold,Rongguo Zhang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 344-353 被引量:12
标识
DOI:10.1007/978-3-031-16446-0_33
摘要

In clinical practice, anisotropic volumetric medical images with low through-plane resolution are commonly used due to short acquisition time and lower storage cost. Nevertheless, the coarse resolution may lead to difficulties in medical diagnosis by either physicians or computer-aided diagnosis algorithms. Deep learning-based volumetric super-resolution (SR) methods are feasible ways to improve resolution, with convolutional neural networks (CNN) at their core. Despite recent progress, these methods are limited by inherent properties of convolution operators, which ignore content relevance and cannot effectively model long-range dependencies. In addition, most of the existing methods use pseudo-paired volumes for training and evaluation, where pseudo low-resolution (LR) volumes are generated by a simple degradation of their high-resolution (HR) counterparts. However, the domain gap between pseudo- and real-LR volumes leads to the poor performance of these methods in practice. In this paper, we build the first public real-paired dataset RPLHR-CT as a benchmark for volumetric SR, and provide baseline results by re-implementing four state-of-the-art CNN-based methods. Considering the inherent shortcoming of CNN, we also propose a transformer volumetric super-resolution network (TVSRN) based on attention mechanisms, dispensing with convolutions entirely. This is the first research to use a pure transformer for CT volumetric SR. The experimental results show that TVSRN significantly outperforms all baselines on both PSNR and SSIM. Moreover, the TVSRN method achieves a better trade-off between the image quality, the number of parameters, and the running time. Data and code are available at https://github.com/smilenaxx/RPLHR-CT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FengyaoWang完成签到,获得积分10
刚刚
keplek完成签到 ,获得积分10
刚刚
虎虎生威完成签到,获得积分10
刚刚
cis2014完成签到,获得积分10
1秒前
ZTLlele完成签到 ,获得积分10
2秒前
芝麻芝麻开门完成签到,获得积分10
4秒前
ChenYifei完成签到,获得积分10
4秒前
5秒前
pufanlg完成签到,获得积分10
7秒前
HCLonely完成签到,获得积分0
9秒前
甜甜圈完成签到,获得积分10
9秒前
ZZY完成签到 ,获得积分10
10秒前
xcm77完成签到,获得积分10
11秒前
jintian完成签到 ,获得积分10
11秒前
Cohenyun完成签到,获得积分10
11秒前
小池由希完成签到 ,获得积分10
11秒前
li发布了新的文献求助10
12秒前
猫小树完成签到 ,获得积分10
13秒前
giao完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助150
13秒前
番茄黄瓜芝士片完成签到 ,获得积分10
13秒前
Maglev完成签到,获得积分10
14秒前
学术骗子小刚完成签到,获得积分0
14秒前
爱吃秋刀鱼的大脸猫完成签到,获得积分10
15秒前
ryan1300完成签到 ,获得积分10
15秒前
16秒前
如意竺完成签到,获得积分10
17秒前
18秒前
乖猫要努力应助冲冲冲采纳,获得10
18秒前
19秒前
19秒前
失眠振家发布了新的文献求助10
20秒前
和尘同光完成签到,获得积分10
20秒前
养猪大户完成签到 ,获得积分10
21秒前
21秒前
独狼完成签到 ,获得积分10
22秒前
喻紫寒完成签到 ,获得积分10
23秒前
tian发布了新的文献求助10
23秒前
LZNUDT完成签到,获得积分10
23秒前
爱学习棒棒糖完成签到,获得积分10
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953546
求助须知:如何正确求助?哪些是违规求助? 3499037
关于积分的说明 11093666
捐赠科研通 3229646
什么是DOI,文献DOI怎么找? 1785694
邀请新用户注册赠送积分活动 869464
科研通“疑难数据库(出版商)”最低求助积分说明 801470