RPLHR-CT Dataset and Transformer Baseline for Volumetric Super-Resolution from CT Scans

计算机科学 卷积神经网络 人工智能 超分辨率 水准点(测量) 深度学习 变压器 算法 数据挖掘 模式识别(心理学) 图像(数学) 工程类 大地测量学 电压 地理 电气工程
作者
Pengxin Yu,Haoyue Zhang,Kang Han,Wen Tang,Corey Arnold,Rongguo Zhang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 344-353 被引量:12
标识
DOI:10.1007/978-3-031-16446-0_33
摘要

In clinical practice, anisotropic volumetric medical images with low through-plane resolution are commonly used due to short acquisition time and lower storage cost. Nevertheless, the coarse resolution may lead to difficulties in medical diagnosis by either physicians or computer-aided diagnosis algorithms. Deep learning-based volumetric super-resolution (SR) methods are feasible ways to improve resolution, with convolutional neural networks (CNN) at their core. Despite recent progress, these methods are limited by inherent properties of convolution operators, which ignore content relevance and cannot effectively model long-range dependencies. In addition, most of the existing methods use pseudo-paired volumes for training and evaluation, where pseudo low-resolution (LR) volumes are generated by a simple degradation of their high-resolution (HR) counterparts. However, the domain gap between pseudo- and real-LR volumes leads to the poor performance of these methods in practice. In this paper, we build the first public real-paired dataset RPLHR-CT as a benchmark for volumetric SR, and provide baseline results by re-implementing four state-of-the-art CNN-based methods. Considering the inherent shortcoming of CNN, we also propose a transformer volumetric super-resolution network (TVSRN) based on attention mechanisms, dispensing with convolutions entirely. This is the first research to use a pure transformer for CT volumetric SR. The experimental results show that TVSRN significantly outperforms all baselines on both PSNR and SSIM. Moreover, the TVSRN method achieves a better trade-off between the image quality, the number of parameters, and the running time. Data and code are available at https://github.com/smilenaxx/RPLHR-CT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杳鸢应助shawwcus采纳,获得30
1秒前
1秒前
ljt1998完成签到,获得积分20
2秒前
kinghao完成签到,获得积分10
3秒前
奥特曼发布了新的文献求助10
4秒前
科研通AI5应助扶瑶可接采纳,获得10
5秒前
撒西不理发布了新的文献求助10
5秒前
科研通AI5应助hoshi1018采纳,获得10
5秒前
wangdong完成签到,获得积分10
5秒前
8秒前
orixero应助科研通管家采纳,获得10
9秒前
Castiron应助科研通管家采纳,获得10
9秒前
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
烟花应助科研通管家采纳,获得10
9秒前
桐桐应助科研通管家采纳,获得10
9秒前
9秒前
深情安青应助科研通管家采纳,获得10
10秒前
田様应助科研通管家采纳,获得10
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
10秒前
好好学习完成签到,获得积分10
11秒前
混子完成签到,获得积分10
12秒前
晓珈越完成签到,获得积分10
13秒前
14秒前
科研通AI2S应助撒西不理采纳,获得10
15秒前
科研通AI5应助马达尬尬采纳,获得10
16秒前
16秒前
调皮衣完成签到,获得积分10
17秒前
小二郎应助个性的饼干采纳,获得10
17秒前
17秒前
wanci应助踏实的电脑采纳,获得10
18秒前
18秒前
Benhnhk21发布了新的文献求助10
18秒前
18秒前
19秒前
Forest发布了新的文献求助10
19秒前
20秒前
畅畅发布了新的文献求助10
22秒前
23秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3482558
求助须知:如何正确求助?哪些是违规求助? 3072126
关于积分的说明 9125865
捐赠科研通 2763959
什么是DOI,文献DOI怎么找? 1516742
邀请新用户注册赠送积分活动 701767
科研通“疑难数据库(出版商)”最低求助积分说明 700608