Employing Graph Neural Networks for Predicting Electrode Average Voltages and Screening High-Voltage Sodium Cathode Materials

材料科学 变压器 阴极 电极 电压 支持向量机 卷积神经网络 电气工程 机器学习 计算机科学 物理化学 化学 工程类
作者
Xiaoyue He,Yanxu Chen,Shao Wang,Genqiang Zhang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (19): 24494-24501 被引量:2
标识
DOI:10.1021/acsami.4c00624
摘要

For many years, humans have been relentlessly focused on enhancing battery longevity and boosting energy storage capacities. The performance and durability of a battery depend significantly on the material used for its electrodes. In this context, merging machine learning with density functional theory (DFT) calculations has emerged as a pivotal approach to advancing the exploration of battery crystal structures. We present a new method that combines a graph convolutional neural network (GNN) with a Transformer convolutional layer, which we call Transformer-GNN. To underscore its efficacy, we benchmarked Transformer-GNN against three established statistical machine learning models: Support Vector Machine, Random Forest, and XGBoost. We also developed a standard GNN, which we refer to as Basic-GNN. Additionally, we compared Basic-GNN with Transformer-GNN to highlight the improvements brought about by incorporating the Transformer convolutional layer. The Transformer-GNN model outperforms the other models, achieving the highest R2 value of 0.82 and the lowest mean squared error of 0.3161. Our findings demonstrate that the Transformer-GNN can profoundly understand battery crystal structures, thus forging the path toward more sophisticated and durable battery systems. Leveraging the GNN model's voltage predictions in tandem with the capacity data sourced from the database, we screened and pinpointed Na(NiO2)2 as a high-voltage (higher than 5 V), high-capacity sodium cathode material. We conducted DFT calculations on Na(NiO2)2 and revealed the migration mechanism of the Na ions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
55555发布了新的文献求助10
刚刚
whole完成签到 ,获得积分10
刚刚
充电宝应助congcong采纳,获得10
4秒前
婷婷完成签到,获得积分10
6秒前
8秒前
天天快乐应助北风采纳,获得10
8秒前
8秒前
乐乐应助走四方采纳,获得10
8秒前
爆米花应助猕猴桃采纳,获得10
8秒前
9秒前
9秒前
su完成签到 ,获得积分10
10秒前
缥缈的越泽完成签到,获得积分10
11秒前
12秒前
Milio完成签到,获得积分20
13秒前
dreamboat发布了新的文献求助10
13秒前
aaj发布了新的文献求助10
13秒前
体贴花卷发布了新的文献求助10
13秒前
14秒前
14秒前
yvonne发布了新的文献求助10
16秒前
Milio发布了新的文献求助30
17秒前
在水一方应助ldj6670采纳,获得10
17秒前
zpq发布了新的文献求助30
19秒前
babe发布了新的文献求助10
19秒前
19秒前
囿于昼夜完成签到,获得积分10
21秒前
Huang完成签到 ,获得积分0
22秒前
月月发布了新的文献求助10
24秒前
聪明的思山完成签到,获得积分10
24秒前
蔡勇强完成签到,获得积分10
25秒前
26秒前
wanci应助平淡小白菜采纳,获得10
26秒前
世间安得双全法完成签到,获得积分0
27秒前
28秒前
共享精神应助月月采纳,获得30
30秒前
故渊完成签到,获得积分10
30秒前
Owen应助illion1采纳,获得10
30秒前
linllll完成签到,获得积分10
31秒前
CodeCraft应助Lolo采纳,获得10
31秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307081
求助须知:如何正确求助?哪些是违规求助? 2940878
关于积分的说明 8499176
捐赠科研通 2615063
什么是DOI,文献DOI怎么找? 1428599
科研通“疑难数据库(出版商)”最低求助积分说明 663482
邀请新用户注册赠送积分活动 648318