Multi-omics approaches for biomarker discovery in predicting the response of esophageal cancer to neoadjuvant therapy: A multidimensional perspective

生物标志物发现 生物标志物 组学 医学 鉴定(生物学) 精密医学 生物信息学 计算生物学 生物 蛋白质组学 病理 生物化学 植物 基因
作者
Zhi Yang,Fada Guan,Lawrence F. Bronk,Lina Zhao
出处
期刊:Pharmacology & Therapeutics [Elsevier]
卷期号:254: 108591-108591 被引量:4
标识
DOI:10.1016/j.pharmthera.2024.108591
摘要

Neoadjuvant chemoradiotherapy (NCRT) followed by surgery has been established as the standard treatment strategy for operable locally advanced esophageal cancer (EC). However, achieving pathologic complete response (pCR) or near pCR to NCRT is significantly associated with a considerable improvement in survival outcomes, while pCR patients may help organ preservation for patients by active surveillance to avoid planned surgery. Thus, there is an urgent need for improved biomarkers to predict EC chemoradiation response in research and clinical settings. Advances in multiple high-throughput technologies such as next-generation sequencing have facilitated the discovery of novel predictive biomarkers, specifically based on multi-omics data, including genomic/transcriptomic sequencings and proteomic/metabolomic mass spectra. The application of multi-omics data has shown the benefits in improving the understanding of underlying mechanisms of NCRT sensitivity/resistance in EC. Particularly, the prominent development of artificial intelligence (AI) has introduced a new direction in cancer research. The integration of multi-omics data has significantly advanced our knowledge of the disease and enabled the identification of valuable biomarkers for predicting treatment response from diverse dimension levels, especially with rapid advances in biotechnological and AI methodologies. Herein, we summarize the current status of research on the use of multi-omics technologies in predicting NCRT response for EC patients. Current limitations, challenges, and future perspectives of these multi-omics platforms will be addressed to assist in experimental designs and clinical use for further integrated analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CodeCraft应助背后的松鼠鼠采纳,获得10
1秒前
我玩安琪拉无敌完成签到,获得积分10
1秒前
csy发布了新的文献求助10
2秒前
安静幻桃完成签到,获得积分10
4秒前
李天完成签到,获得积分10
4秒前
5秒前
5秒前
wanci应助123采纳,获得10
5秒前
xtutang发布了新的文献求助10
5秒前
文由完成签到,获得积分10
6秒前
7秒前
Z赵完成签到 ,获得积分10
7秒前
乐乐发布了新的文献求助10
8秒前
8秒前
阿狸狸狸狸不开完成签到 ,获得积分10
9秒前
在水一方应助H喜欢老霉采纳,获得10
10秒前
w蛋包饭w完成签到,获得积分10
10秒前
zy完成签到 ,获得积分10
10秒前
小王完成签到,获得积分10
11秒前
11秒前
星辰大海应助东郭惊蛰采纳,获得10
11秒前
我是老大应助迷途的羔羊采纳,获得10
12秒前
Gergeo应助kk采纳,获得20
12秒前
13秒前
csy完成签到,获得积分10
14秒前
俊逸的汲完成签到,获得积分10
15秒前
小王发布了新的文献求助10
15秒前
16秒前
17秒前
123发布了新的文献求助10
17秒前
17秒前
18秒前
俊逸的汲发布了新的文献求助10
18秒前
19秒前
郭诗涵完成签到,获得积分10
19秒前
20秒前
舒适电源发布了新的文献求助10
20秒前
华仔应助乐乐采纳,获得10
20秒前
fuiee完成签到,获得积分10
21秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156964
求助须知:如何正确求助?哪些是违规求助? 2808328
关于积分的说明 7877268
捐赠科研通 2466845
什么是DOI,文献DOI怎么找? 1313040
科研通“疑难数据库(出版商)”最低求助积分说明 630355
版权声明 601919