Review of machine learning and deep learning models for toxicity prediction

机器学习 人工智能 计算机科学 深度学习 随机森林 支持向量机 人工神经网络 毒性 医学 内科学
作者
Wenjing Guo,Jie Liu,Fan Dong,Meng Song,Zhong Li,Md Kamrul Hasan Khan,Tucker A. Patterson,Huixiao Hong
出处
期刊:Experimental Biology and Medicine [SAGE]
被引量:13
标识
DOI:10.1177/15353702231209421
摘要

The ever-increasing number of chemicals has raised public concerns due to their adverse effects on human health and the environment. To protect public health and the environment, it is critical to assess the toxicity of these chemicals. Traditional in vitro and in vivo toxicity assays are complicated, costly, and time-consuming and may face ethical issues. These constraints raise the need for alternative methods for assessing the toxicity of chemicals. Recently, due to the advancement of machine learning algorithms and the increase in computational power, many toxicity prediction models have been developed using various machine learning and deep learning algorithms such as support vector machine, random forest, k-nearest neighbors, ensemble learning, and deep neural network. This review summarizes the machine learning- and deep learning-based toxicity prediction models developed in recent years. Support vector machine and random forest are the most popular machine learning algorithms, and hepatotoxicity, cardiotoxicity, and carcinogenicity are the frequently modeled toxicity endpoints in predictive toxicology. It is known that datasets impact model performance. The quality of datasets used in the development of toxicity prediction models using machine learning and deep learning is vital to the performance of the developed models. The different toxicity assignments for the same chemicals among different datasets of the same type of toxicity have been observed, indicating benchmarking datasets is needed for developing reliable toxicity prediction models using machine learning and deep learning algorithms. This review provides insights into current machine learning models in predictive toxicology, which are expected to promote the development and application of toxicity prediction models in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sirius完成签到,获得积分10
刚刚
zhiyang完成签到,获得积分20
刚刚
专注玩手机的可乐关注了科研通微信公众号
刚刚
cy完成签到,获得积分20
1秒前
1秒前
Jessic完成签到,获得积分10
1秒前
乔佳怡完成签到,获得积分10
1秒前
德行天下完成签到,获得积分10
1秒前
左旋溜达鸡完成签到,获得积分10
2秒前
2秒前
陈陈陈皮完成签到,获得积分10
2秒前
3秒前
李爱国应助王讯采纳,获得10
3秒前
脑洞疼应助俏皮的厉采纳,获得10
4秒前
4秒前
6秒前
6秒前
听蝉完成签到,获得积分10
7秒前
OvO完成签到,获得积分10
7秒前
7秒前
花花发布了新的文献求助30
8秒前
8秒前
pluto应助桂花采纳,获得10
9秒前
yue发布了新的文献求助10
10秒前
10秒前
大模型应助俊逸沅采纳,获得10
10秒前
OvO发布了新的文献求助10
10秒前
inter发布了新的文献求助10
11秒前
小胖卷毛完成签到,获得积分10
12秒前
越野完成签到 ,获得积分10
12秒前
12秒前
Chenqzl发布了新的文献求助10
12秒前
斯文败类应助小晶豆采纳,获得10
14秒前
似乎一场梦完成签到,获得积分10
14秒前
小奥奥完成签到,获得积分10
14秒前
bkagyin应助yuhang采纳,获得10
15秒前
斯文败类应助追寻凌青采纳,获得10
15秒前
15秒前
wz完成签到,获得积分10
16秒前
王讯发布了新的文献求助10
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461678
求助须知:如何正确求助?哪些是违规求助? 3055353
关于积分的说明 9047590
捐赠科研通 2745170
什么是DOI,文献DOI怎么找? 1506011
科研通“疑难数据库(出版商)”最低求助积分说明 695973
邀请新用户注册赠送积分活动 695380