An Approximate Dynamic Programming Approach to Dynamic Stochastic Matching

动态规划 随机规划 数学优化 计算机科学 匹配(统计) 算法 数学 统计
作者
Fan You,Thomas Vossen
出处
期刊:Informs Journal on Computing
标识
DOI:10.1287/ijoc.2021.0203
摘要

Dynamic stochastic matching problems arise in a variety of recent applications, ranging from ridesharing and online video games to kidney exchange. Such problems are naturally formulated as Markov decision processes (MDPs) that are, however, intractable in general. To improve tractability, we investigate the linear programming-based approach to approximate dynamic programming. This approach can provide both feasible control policies and bounds on the MDPs’ optimal policy value, which can be used to establish optimality gaps. However, the approximate linear programs (ALPs) resulting from this approach can often be difficult to solve. To address this computational challenge, we derive novel ALP reformulations that can be used for a broad class of dynamic stochastic matching problems that incorporate, among others, possible match failures and certain restrictions on feasible matchings. We show that these ALP reformulations can be solved efficiently and applied to a broad class of dynamic matching problems. In addition, our numerical results indicate that our ALP reformulations can produce tight bounds that allow us to establish near-optimal policy performance for a broad set of problem instances. Thus, ALP reformulations can present an attractive alternative for applications that involve dynamic stochastic matching. History: Accepted by Nicola Secomandi, Area Editor for Stochastic Models & Reinforcement Learning. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2021.0203 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2021.0203 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SciGPT应助无心的荆采纳,获得10
6秒前
7秒前
14秒前
萝卜完成签到,获得积分10
14秒前
Orange应助殷勤的紫槐采纳,获得10
16秒前
17秒前
Min完成签到,获得积分10
19秒前
Shan发布了新的文献求助10
20秒前
祖国小红花完成签到,获得积分20
20秒前
端庄的访枫完成签到 ,获得积分10
21秒前
白宇完成签到 ,获得积分10
22秒前
22秒前
22秒前
终醒完成签到,获得积分10
23秒前
attdo完成签到,获得积分10
24秒前
Kimi发布了新的文献求助10
26秒前
俭朴的身影完成签到,获得积分10
27秒前
乐悠完成签到 ,获得积分10
30秒前
31秒前
GR完成签到,获得积分0
32秒前
千千千千千千青完成签到 ,获得积分10
33秒前
33秒前
33秒前
小白完成签到 ,获得积分10
36秒前
36秒前
吴咪发布了新的文献求助10
36秒前
37秒前
灵舒发布了新的文献求助10
38秒前
QAQSS完成签到 ,获得积分10
47秒前
Jeremy完成签到 ,获得积分10
49秒前
大虫子完成签到,获得积分10
51秒前
51秒前
52秒前
北方柔和的干姜完成签到,获得积分10
52秒前
棠以秧完成签到 ,获得积分10
52秒前
老实乌冬面完成签到 ,获得积分10
54秒前
59秒前
1分钟前
灵巧的飞雪完成签到 ,获得积分10
1分钟前
高分求助中
Востребованный временем 2500
Production Logging: Theoretical and Interpretive Elements 2000
Kidney Transplantation: Principles and Practice 1000
The Restraining Hand: Captivity for Christ in China 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Encyclopedia of Mental Health Reference Work 300
脑血管病 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3371589
求助须知:如何正确求助?哪些是违规求助? 2989704
关于积分的说明 8736799
捐赠科研通 2672949
什么是DOI,文献DOI怎么找? 1464289
科研通“疑难数据库(出版商)”最低求助积分说明 677484
邀请新用户注册赠送积分活动 668822