清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Transferability-Guided Cross-Domain Cross-Task Transfer Learning

计算机科学 可转让性 交叉熵 学习迁移 公制(单位) 人工智能 理论计算机科学 机器学习 最大熵原理 运营管理 罗伊特 经济
作者
Yang Tan,Enming Zhang,Yang Li,Shao‐Lun Huang,Xiao–Ping Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (2): 2423-2436 被引量:8
标识
DOI:10.1109/tnnls.2024.3358094
摘要

We propose two novel transferability metrics fast optimal transport-based conditional entropy (F-OTCE) and joint correspondence OTCE (JC-OTCE) to evaluate how much the source model (task) can benefit the learning of the target task and to learn more generalizable representations for cross-domain cross-task transfer learning. Unlike the original OTCE metric that requires evaluating the empirical transferability on auxiliary tasks, our metrics are auxiliary-free such that they can be computed much more efficiently. Specifically, F-OTCE estimates transferability by first solving an optimal transport (OT) problem between source and target distributions and then uses the optimal coupling to compute the negative conditional entropy (NCE) between the source and target labels. It can also serve as an objective function to enhance downstream transfer learning tasks including model finetuning and domain generalization (DG). Meanwhile, JC-OTCE improves the transferability accuracy of F-OTCE by including label distances in the OT problem, though it incurs additional computation costs. Extensive experiments demonstrate that F-OTCE and JC-OTCE outperform state-of-the-art auxiliary-free metrics by $21.1\%$ and $25.8\%$ , respectively, in correlation coefficient with the ground-truth transfer accuracy. By eliminating the training cost of auxiliary tasks, the two metrics reduce the total computation time of the previous method from 43 min to 9.32 and 10.78 s, respectively, for a pair of tasks. When applied in the model finetuning and DG tasks, F-OTCE shows significant improvements in the transfer accuracy in few-shot classification experiments, with up to $4.41\%$ and $2.34\%$ accuracy gains, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhuosht完成签到 ,获得积分10
2秒前
鲤鱼山人完成签到 ,获得积分10
9秒前
sevenhill完成签到 ,获得积分0
21秒前
Orange应助www采纳,获得10
21秒前
Arctic完成签到 ,获得积分10
23秒前
zzgpku完成签到,获得积分0
27秒前
wave8013完成签到 ,获得积分10
40秒前
50秒前
两个轮完成签到 ,获得积分10
1分钟前
笨笨完成签到 ,获得积分10
1分钟前
英俊的铭应助ysss0831采纳,获得10
1分钟前
红火完成签到 ,获得积分10
1分钟前
Adc应助科研通管家采纳,获得10
1分钟前
Adc应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
herpes完成签到 ,获得积分10
2分钟前
chichenglin完成签到 ,获得积分0
2分钟前
gmc完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
Yuki完成签到 ,获得积分10
3分钟前
3分钟前
朱光辉完成签到,获得积分10
3分钟前
22完成签到 ,获得积分10
3分钟前
Moona发布了新的文献求助10
3分钟前
Adc应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
ysss0831完成签到,获得积分10
3分钟前
ysss0831发布了新的文献求助10
3分钟前
3分钟前
www发布了新的文献求助10
3分钟前
嘻嘻完成签到,获得积分10
4分钟前
坚定盈完成签到,获得积分20
4分钟前
坚定盈发布了新的文献求助10
4分钟前
4分钟前
5分钟前
滕祥应助科研通管家采纳,获得30
5分钟前
在水一方应助科研通管家采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715229
求助须知:如何正确求助?哪些是违规求助? 5232233
关于积分的说明 15274227
捐赠科研通 4866222
什么是DOI,文献DOI怎么找? 2612791
邀请新用户注册赠送积分活动 1562951
关于科研通互助平台的介绍 1520349