Transferability-Guided Cross-Domain Cross-Task Transfer Learning

计算机科学 可转让性 交叉熵 学习迁移 公制(单位) 人工智能 理论计算机科学 机器学习 最大熵原理 运营管理 经济 罗伊特
作者
Yang Tan,Enming Zhang,Yang Li,Shao‐Lun Huang,Xiao–Ping Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:4
标识
DOI:10.1109/tnnls.2024.3358094
摘要

We propose two novel transferability metrics fast optimal transport-based conditional entropy (F-OTCE) and joint correspondence OTCE (JC-OTCE) to evaluate how much the source model (task) can benefit the learning of the target task and to learn more generalizable representations for cross-domain cross-task transfer learning. Unlike the original OTCE metric that requires evaluating the empirical transferability on auxiliary tasks, our metrics are auxiliary-free such that they can be computed much more efficiently. Specifically, F-OTCE estimates transferability by first solving an optimal transport (OT) problem between source and target distributions and then uses the optimal coupling to compute the negative conditional entropy (NCE) between the source and target labels. It can also serve as an objective function to enhance downstream transfer learning tasks including model finetuning and domain generalization (DG). Meanwhile, JC-OTCE improves the transferability accuracy of F-OTCE by including label distances in the OT problem, though it incurs additional computation costs. Extensive experiments demonstrate that F-OTCE and JC-OTCE outperform state-of-the-art auxiliary-free metrics by $21.1\%$ and $25.8\%$ , respectively, in correlation coefficient with the ground-truth transfer accuracy. By eliminating the training cost of auxiliary tasks, the two metrics reduce the total computation time of the previous method from 43 min to 9.32 and 10.78 s, respectively, for a pair of tasks. When applied in the model finetuning and DG tasks, F-OTCE shows significant improvements in the transfer accuracy in few-shot classification experiments, with up to $4.41\%$ and $2.34\%$ accuracy gains, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ChatGPT发布了新的文献求助10
刚刚
1秒前
1秒前
暴躁的嘉懿完成签到,获得积分10
3秒前
龙傲天完成签到 ,获得积分10
3秒前
hhh发布了新的文献求助10
4秒前
小杨完成签到,获得积分10
6秒前
风华正茂完成签到,获得积分10
7秒前
康康完成签到 ,获得积分10
9秒前
柒z完成签到,获得积分10
11秒前
赘婿应助momo采纳,获得10
15秒前
油点小鳄完成签到,获得积分20
18秒前
19秒前
19秒前
桐桐应助wish采纳,获得10
20秒前
21秒前
桐桐应助百十余采纳,获得10
24秒前
义气如萱发布了新的文献求助10
24秒前
24秒前
25秒前
小二郎应助KM比比采纳,获得10
26秒前
不能吃了发布了新的文献求助10
26秒前
李健的粉丝团团长应助LJJ采纳,获得10
27秒前
28秒前
29秒前
体贴绝音发布了新的文献求助10
29秒前
30秒前
丘比特应助sakegeda采纳,获得10
32秒前
33秒前
wish发布了新的文献求助10
33秒前
不能吃了完成签到,获得积分10
34秒前
34秒前
35秒前
37秒前
好滴捏发布了新的文献求助10
39秒前
39秒前
pyt完成签到,获得积分10
40秒前
41秒前
英俊的铭应助不安的紫翠采纳,获得10
42秒前
43秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989334
求助须知:如何正确求助?哪些是违规求助? 3531428
关于积分的说明 11253936
捐赠科研通 3270119
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173