Transferability-Guided Cross-Domain Cross-Task Transfer Learning

计算机科学 可转让性 交叉熵 学习迁移 公制(单位) 人工智能 理论计算机科学 机器学习 最大熵原理 运营管理 罗伊特 经济
作者
Yang Tan,Enming Zhang,Yang Li,Shao‐Lun Huang,Xiao–Ping Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (2): 2423-2436 被引量:8
标识
DOI:10.1109/tnnls.2024.3358094
摘要

We propose two novel transferability metrics fast optimal transport-based conditional entropy (F-OTCE) and joint correspondence OTCE (JC-OTCE) to evaluate how much the source model (task) can benefit the learning of the target task and to learn more generalizable representations for cross-domain cross-task transfer learning. Unlike the original OTCE metric that requires evaluating the empirical transferability on auxiliary tasks, our metrics are auxiliary-free such that they can be computed much more efficiently. Specifically, F-OTCE estimates transferability by first solving an optimal transport (OT) problem between source and target distributions and then uses the optimal coupling to compute the negative conditional entropy (NCE) between the source and target labels. It can also serve as an objective function to enhance downstream transfer learning tasks including model finetuning and domain generalization (DG). Meanwhile, JC-OTCE improves the transferability accuracy of F-OTCE by including label distances in the OT problem, though it incurs additional computation costs. Extensive experiments demonstrate that F-OTCE and JC-OTCE outperform state-of-the-art auxiliary-free metrics by $21.1\%$ and $25.8\%$ , respectively, in correlation coefficient with the ground-truth transfer accuracy. By eliminating the training cost of auxiliary tasks, the two metrics reduce the total computation time of the previous method from 43 min to 9.32 and 10.78 s, respectively, for a pair of tasks. When applied in the model finetuning and DG tasks, F-OTCE shows significant improvements in the transfer accuracy in few-shot classification experiments, with up to $4.41\%$ and $2.34\%$ accuracy gains, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
打打应助Ade采纳,获得10
2秒前
彳亍1117应助chunjianghua采纳,获得10
2秒前
彳亍1117应助chunjianghua采纳,获得10
2秒前
浮游应助chunjianghua采纳,获得10
2秒前
彳亍1117应助chunjianghua采纳,获得10
2秒前
3秒前
3秒前
爆米花应助赵小坤堃采纳,获得10
3秒前
天天快乐应助成就谷秋采纳,获得10
3秒前
薯角披萨发布了新的文献求助10
3秒前
共享精神应助西门灵薇采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
yangm9应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
5秒前
yangm9应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
5秒前
高高发布了新的文献求助10
6秒前
温水云发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
小二郎应助happy采纳,获得10
9秒前
靠谱发布了新的文献求助10
11秒前
wxyshare应助安静的颖采纳,获得10
12秒前
12秒前
健忘的静竹完成签到,获得积分10
12秒前
husuhew完成签到 ,获得积分10
13秒前
Aiden关注了科研通微信公众号
14秒前
14秒前
百川完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
负阳氧应助高高采纳,获得10
19秒前
量子星尘发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5073345
求助须知:如何正确求助?哪些是违规求助? 4293480
关于积分的说明 13378526
捐赠科研通 4114894
什么是DOI,文献DOI怎么找? 2253241
邀请新用户注册赠送积分活动 1258048
关于科研通互助平台的介绍 1190881