Transferability-Guided Cross-Domain Cross-Task Transfer Learning

计算机科学 可转让性 交叉熵 学习迁移 公制(单位) 人工智能 理论计算机科学 机器学习 最大熵原理 运营管理 罗伊特 经济
作者
Yang Tan,Enming Zhang,Yang Li,Shao‐Lun Huang,Xiao–Ping Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (2): 2423-2436 被引量:8
标识
DOI:10.1109/tnnls.2024.3358094
摘要

We propose two novel transferability metrics fast optimal transport-based conditional entropy (F-OTCE) and joint correspondence OTCE (JC-OTCE) to evaluate how much the source model (task) can benefit the learning of the target task and to learn more generalizable representations for cross-domain cross-task transfer learning. Unlike the original OTCE metric that requires evaluating the empirical transferability on auxiliary tasks, our metrics are auxiliary-free such that they can be computed much more efficiently. Specifically, F-OTCE estimates transferability by first solving an optimal transport (OT) problem between source and target distributions and then uses the optimal coupling to compute the negative conditional entropy (NCE) between the source and target labels. It can also serve as an objective function to enhance downstream transfer learning tasks including model finetuning and domain generalization (DG). Meanwhile, JC-OTCE improves the transferability accuracy of F-OTCE by including label distances in the OT problem, though it incurs additional computation costs. Extensive experiments demonstrate that F-OTCE and JC-OTCE outperform state-of-the-art auxiliary-free metrics by $21.1\%$ and $25.8\%$ , respectively, in correlation coefficient with the ground-truth transfer accuracy. By eliminating the training cost of auxiliary tasks, the two metrics reduce the total computation time of the previous method from 43 min to 9.32 and 10.78 s, respectively, for a pair of tasks. When applied in the model finetuning and DG tasks, F-OTCE shows significant improvements in the transfer accuracy in few-shot classification experiments, with up to $4.41\%$ and $2.34\%$ accuracy gains, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ava应助凯凯采纳,获得10
刚刚
天天快乐应助凯凯采纳,获得10
刚刚
深情安青应助凯凯采纳,获得10
刚刚
慕青应助凯凯采纳,获得10
刚刚
所所应助鹿人采纳,获得10
刚刚
李爱国应助凯凯采纳,获得10
刚刚
熬夜波比应助凯凯采纳,获得10
刚刚
Ava应助凯凯采纳,获得10
1秒前
大个应助凯凯采纳,获得10
1秒前
yyq发布了新的文献求助10
1秒前
1秒前
1秒前
快乐小猴完成签到,获得积分20
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
无奈可仁完成签到,获得积分10
1秒前
1秒前
浮游应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI6应助娇娇采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
进击的PhD应助科研通管家采纳,获得20
2秒前
2秒前
小蘑菇应助科研通管家采纳,获得30
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
小猛发布了新的文献求助30
2秒前
xixi应助科研通管家采纳,获得10
2秒前
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
orixero应助夏夏末和秋秋初采纳,获得30
2秒前
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
2秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661010
求助须知:如何正确求助?哪些是违规求助? 4836679
关于积分的说明 15093101
捐赠科研通 4819724
什么是DOI,文献DOI怎么找? 2579492
邀请新用户注册赠送积分活动 1533827
关于科研通互助平台的介绍 1492616